



THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

# (A Constituent College of JKUAT)

# (A Centre of Excellence) Faculty of Applied & Health

# Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

## UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING BACHELOR OF SCIENCE IN BUILDING & CIVIL ENGINEERING BACHELOR OF SCIENCE IN ELECTRICAL & ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SPH 2171: PHYSICS II

# END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

### **Instructions to Candidates:**

You should have the following for this examination

Answer Booklet

This paper consist of FIVE questions in TWO sections A & B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

## **Question One (Compulsory)**

a) State the properties of electrostatic forces.(4 marks)

- **b)** Using the Gauss law, derive the coulomb law for an isolated point charge. **(5 marks)**
- © 2012 The Mombasa Polytechnic University College

- c) A piece of plastic pipe of radius r is uniformly charged on the surface. What is the electric field along it axis. Explain. (2 marks)
- **d)** Three capacitors C<sub>1</sub>, C<sub>2</sub>, and C<sub>3</sub> are connected in series. Derive an expression for the net capacitance. **(4 marks)**

$$V = 4x^2 - 3xy^2 + 2z^2$$

- e) The potential at a certain region is given by volts. Find the components of the electric field intensity, E at the point (4, 3, -2) metres.(6 marks)
- f) (i) State the Lorentz Law (2 marks)
   (ii) Charges are flowing into a wall within a region where the magnetic field is vertically upwards. On a sketch, illustrate the direction of the lines of force. (3 marks)
- **g)** Two isolated conductors of radii  $a_1$ , and  $a_2$  are electrically connected together. Find the ratio of their  $\lambda_1 \quad \lambda_2$  final charge densities and (4 marks)

#### **Question Two**

Three charges are placed at the vertices of an equilateral triangle of sides 10cm, such that the line joining

|                                                 | $q_1 = -1.0 \mu C, \ q_2 = +3 \mu C$ | $C \qquad q_3 = -2\mu C$ | 5        |
|-------------------------------------------------|--------------------------------------|--------------------------|----------|
| $q_1$ to $q_2$ is parallel to the x-axis. Given | that                                 | and                      | , Find:- |

| a) | The resultant force on $q_1$ and its direction due to this charge distribution. | (6 marks) |
|----|---------------------------------------------------------------------------------|-----------|
| b) | The electric field at X, the centre of the configuration.                       | (9 marks) |
| c) | The electric potential at X.                                                    | (2 marks) |
| d) | The total electric potential energy due to the configuration.                   | (3 marks) |

#### **Question Three**

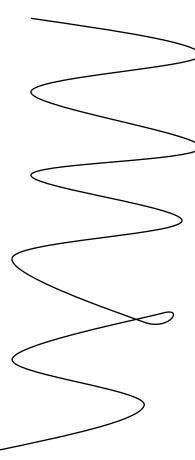
a) Show that the electric field strength E due to a dipole of magnitude q placed a distance 2a apart at a point X a distance r from the line joining them is inversely proportional to  $r^3$ , when r >>a.

(7 marks)

b) Determine the potential at point P, r metres on the axis of a uniformly charged disk of radius a, whose  $\delta$  surface density is hence show that it behaves as a point charge when r>>a. (13 marks)

#### **Question Four**

- a) Describe the charging and discharging process of a capacitor. (5 marks)
- $\mu F$  b) A circuit is connected as shown below. Each of the capacitor has a capacitance of 5  $\,$  .
  - (i)Find the total capacitance of the circuit.(4 marks)(ii)Determine the charge on  $C_1$  and  $C_A$ .(5 marks)


- (iii) Determine the total energy stored in the network when fully charged. (3 marks)
- c) Explain the effect of a dielectric on the capacitance of a capacitor. (4 marks)

#### **Question Five**

a) A singly charged carbon ion is moving at a speed of 300km/s at right angles to a magnetic field of 0.75T.

| (i)   | What is the force on the ion?                         | (3 marks) |
|-------|-------------------------------------------------------|-----------|
| (ii)  | What is the centripetal acceleration of the ion?      | (4 marks) |
| (iii) | Find the radius of the circle in which the ion moves. | (3 marks) |

- (1 amu =  $1.66 \times 10^{-27}$  kg, mass of carbon 12 amu)
- $\Omega, R_2 = 0.3K\Omega, R3 = 0.6K\Omega$ b) The figure below shows a circuit is which E = 3V, R\_1 = 0.4K and  $R_4 = 1K\Omega$



Find:

- (i) The equivalent resistance between A and B.
- (ii) The electric potential across R<sub>1</sub>.
- (iii) The current through R<sub>3</sub>.

(4 marks) (3 marks) (3 marks)