

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN MATHEMATICS & COMPUTER SCIENCE

SPH 2172: PHYSICS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer Booklet

This paper consist of FIVE questions in TWO sections A & B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Take:

Question One (Compulsory)

		$S = ka^{x}t^{y}$	
a)	Suppose the displacement of a particle is related to the acceleration and time as dimensionless constant and x and y are values. Determine x and y.	where k is a (3 marks)	
b)	State the principle of superposition as applied to the electric fields	(2 marks)	
0	2012 The Membres Polytechnic University College	Daga 1	

 $\ensuremath{\mathbb{C}}$ 2012 – The Mombasa Polytechnic University College

Page 1

Ω

(4 marks)

- c) A wire of length 10m and a diameter of 1.2mm has a resistance of 1.4 . What is the resistance if the length is 16m and the diameter is 0.8mm? (3 marks)
- **d)** Show that for a parallel arrangement of capacitors, $_{C1}$, C_2 and C_3 , the total capacitance is given by: $C_T = C_1 + C_2 + C_3$
- $\Delta V = (200V) \sin wt$ e) The voltage output of a generator is given by . Find the root mean square current 100Ω when this generator is connected to resistor. (3 marks)
- f) Sketch and output graph of a half-ware rectifier when connected to the cathode ray oscilloscope without a filter capacitor.
 (3 marks)
- g) A conductor of a uniform radius carries a current of 3A produced by an electric field of 120v/m. What is its resistivity of the material? (3 marks)
- h) Differentiate between the terms terminal voltage and electromotive (e.m.f) (2 marks)
- i) Three resistors are connected in parallel as shown below. A potential difference of 18V is maintained between the points *a* and *b*. Determine the current through all resistors. (3 marks)

18V

j) Consider a capacitor of capacitance C that is being discharged through a resistor R. After how many time constants is the charge on the capacitor one-forth its initial value? (4 marks)

Question Two

a) A Copper wire has a radius of 0.8mm and a length of 14m. It carries a 6A current. Determine:

(i)	The potential difference between the ends of the wire.	(6 marks)
(ii)	The resistance of the wire	(3 marks)
(iii)	The power dissipaled by the wire	(3 marks)
	ΩΜ	
	(Take resistivity of Copper = 1.7×10^{-8}).	

b) An uncharged capacitor and a resistor are connected in series to a battery as shown below. If E = 12V, $C = 5\mu F$ $R = 800K\Omega$

and

Find:

(i) (ii)	Time constant of the circuit	(2 marks)
(11) (iii)	The maximum charge in the capacitor The maximum current in the circuit	(2 marks) (2 marks)
(iv)	The charge as a function of time.	(2 marks)

Question Three

a) Write **TWO** loops equalities for the left and right loops in the circuit below:

R₃

 $R_1 = 2\Omega, R_2 = 3\Omega, R_3 = 1\Omega, \varepsilon_1 = 5V, \varepsilon_2 = 2V$ $\varepsilon_3 = 11V$ **b)** Give and , Determine: (4 marks) I_1 (i) (ii) \mathbf{I}_2 (4 marks) (iii) I_3 (2 marks) Ω c) A battery has an emf of 12V and an internal resistance of 0.05 . Find the current and the terminal Ω voltage in the circuit when a load of 3⁻⁻ is connected. (6 marks)

Question Four

 $Q_1 = 5\mu C$

 $-5\mu C$

(2 marks)

(2 marks)

a) A charge is located at the origin and a second charge Q_2 = is located in the axis 0.03m from the origin as shown below:

Determine:

- (i) Electric field of print P due to charge Q₁?
- (ii) Electric field to print P due to charge Q₂?
- (iii) Determine the net electric field at point P due to both charge Q1 and Q2? (4 marks)
- b) A total charge Q is distributed uniformly round a thin ring of radius a. Find the potential on the rings axis.
 (5 marks)

$$q_1 = 2\mu C$$
 $q_2 = -6\mu C$
A charge is located at the origin and charge is located at coordinate (0, 3)m.

Find the total electric potential due to these charges at a point P whose cordiante are (4, 0) m. (4 marks)

Question Five

C)

	$R = 425\Omega, \ L = 1.25mH, \ C = 3.5\mu F, \ \varpi = 377 s^{-1}$	$\Delta V \max = 150V$
a)	A series RLC circuit has an	d
	Determine:	
	(i) Inductive reactance of the circuit.	(2 marks)
	(ii) Capacitive reactance of the circuit	
	(iii) Impedance of the circuit.	(2 marks)
	(iv) Calculate the average power delivered to the RLC circuit.	(4 marks)
b)	Find the maximum current in the circuit.	(2 marks)
c)	Find the phase angle between current and voltage.	(2 marks)
d)	Find both maximum voltage and instantaneous voltage across each element.	(6 marks)