

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN ELECTRICAL POWER ENGINEERING

AMA 2301: ENGINEERING MATHEMATICS V

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical table
- Scientific Calculator

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions

SECTION A (COMPULSORY)

Question One

$$
f(z)=x y^{2}+i x^{2} y
$$

a) (i) Given that find the point where Canchy-Riemann equations are satisfied for the function

$$
z=2 x y+i\left(x^{2}-y^{2}\right)
$$

(ii) Determine if
is analytic
(5 marks)

$$
f(x)=\left\{\begin{array}{cr}
x+\bar{u} & \text { for } 0 \leq x \leq \bar{u} \\
-x-\bar{u} & -\bar{u} \leq x<0
\end{array}\right.
$$

b) (i) Find the fourier series to represent
(ii) Represent the following function by a half range fourier sine series:

$$
f(x)= \begin{cases}x, & 0<x \leq \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2}<x \leq \pi\end{cases}
$$

c) Devise a fixed iteractive schemes to find the roots of the quadratic equation:

$$
2 x^{2}-24 x+4 x=0
$$

and test them numerically using Newton-Raphson iterative method.

(4 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

$$
w=f(t)=z^{2}+2 z-3 z
$$

a) Express the function in the form:

$$
w=f(z)=u(x, y)+i V(x, y)
$$

Then find the value of $f(1+i)$

$$
|z-3 i|=3 \quad w=\frac{1}{z}
$$

b) Find the image of under the mapping

$$
u=x^{2}-y^{2} \quad v=\frac{y}{x^{2}+y^{2}}
$$

c) Prove that and are harmonic functions of (x, y) but are not harmonic conjugates.

Question Three

$$
f(x)=\left\{\begin{array}{cc}
0 & -5<x<0 \\
5 & 0<x<5
\end{array} \quad f(x+10)\right.
$$

a) A function $f(x)$ is defined as
(i) Sketch the function for at least three periods
(ii) State whether the function is odd, even or neither
(iii) Determine the fourier series.
b) A periodic wave function if fig 1 below represents an electromotive force in an electric circuit.
(i) Determine the analytic representation of the wave hence resulting fourier series.
(ii) Using a suitable substitution and the series in b(1) above show that:

$$
\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

Question Four

$$
f(x)=x^{3}+4 x^{2}-10=0
$$

a) Solve
b) Using the interaction method to solve

$$
f(x)=x-\cos x=0
$$

Question Five

$$
x^{3}-2 x^{2}+2=0
$$

a) Given that x_{n} is a approximation to the root of the equation , show using Newton-

$$
x_{n} r_{1}
$$

Raphson method that an approximation is given by:

$$
\begin{gathered}
x_{n}+1=\frac{2 x_{n}^{3}-2 x n^{2}-2}{3 x_{n}^{2}-4 x_{n}} \\
X_{0}=-0.85
\end{gathered}
$$

Hence by taking find to five decimal places the root of the equation.

(8 marks)

b) Given the table below, use Newton-Gregory interpolation formula to determine:
(i) $f(-3)$
(ii) $f(4)$
marks)

x	-2	-1	0	1	2
$\mathrm{f}(\mathrm{x})$	-10	0	4	8	18

