

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF TECHNOLOGY IN INFORAMTION TECHNOLOGY (BTIT 13S – PT)

AMA 4203: STATISTICS

END OF SEMESTER EXAMINATION SERIES: AUGUST 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
 - Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a) Define the following terms as used in probability and statistics:

(i)	Variable	(1 mark)
	Class interval	(1 mark)
(iii)	Mutually exclusive events	(1 mark)

- b) Determine the probability of having at least one girl and one boy in a family of 4 children assuming equal probability of male and female birth. (6 marks)
- **c)** Determine the value of C so that the following function can serve as a probability mass function:

 $f(x) = C\binom{2}{x}\binom{3}{3-x}, x = 0, 1, 2$

(4 marks)

$$f(x) = \begin{cases} k(x - x^2) & 0 \le x \le 1\\ 0 & elsewhere \end{cases}$$

K, constant. Find

(3 marks) (3 marks) (3 marks)

The value of K (i) The mean

d) Let X be random variable with pdf

- (ii)
- (iii) Mode
- e) A piece of equipment will function when all 3 components A, B and C are working. The probability of A failing during one year is 0.15, that of B failing is 0.05 and that of C failing is 0.10. If the components work independently, determine the probability of;
 - The equipment failing before the end of the year (i)
 - (ii) The equipment failing due to component A

Question Two

a) In a bolt factory, machines A, B and C manufacture respectively 25%, 35% and 40% of the total output. It is known that in their output 5%, 4% and 2% respectively are defective bolts. A bolt is drawn at random from the production line and is found to be defective. Determine the probability that it was manufactured by:

(i)	Machine A	(4 marks)
(ii)	Machine B	(3 marks)
(iii)	Machine C	(3 marks)

b) Contamination is a problem in manufacture of optical storage disks. The number of particles of contamination that occur on an optical disk has a Poisson distribution and the average number of particles per cm² of media surface is 0.1. The area of disk under study is 100cm². Find the probability that:

(i)	12 particles occur in the area under study	(3 marks)
(ii)	No particle is found in the area under study	(2 marks)
(iii)	3 or fewer particles occur in the area under study	(5 marks)

Question Three

a) The quality control department of a wire manufacturing company periodically selects a sample of wire specimens to test for breaking strength. Past records shown that the breaking strengths of a certain $\sigma = 200$

type of wire are normally distributed with a standard deviation of kgf. If a sample of 50 wires had a mean breaking strength of 2500kgf, find the 95% confidence interval for the population (4 marks) mean.

b) The mean lifetime of a sample of 100 light tubes produced by a company is found to be 1570 hours with a standard deviation of 80 hours. Test a 5% level, the hypothesis that the mean life time of the tubes produced by the company is 1600 hours. (5 marks)

(6 marks) (2 marks)

- c) The mean diameter of a sample of 200 washers produced by a machine is 5.02mm and variance is 0.05mm. The purpose for which the washers are produced allows a maximum tolerance in diameter of 4.96 to 5.08mm otherwise they are considered defective. Determine the percentage defective washers produced by the machine assuming a normal distribution for the diameter. (6 marks)
- d) Two students received standard stores of 0.8 and -0.4 respectively in an examination. if their marks were 88 and 64 respectively, find the mean and standard deviation of the examination. **(5 marks)**

Question Four

In an experiment to measure the relationship between the power consumed by a motor (watts) and its noise output (decibels); the following data were collected:

Power consumed	3	5	6	9	10	12	15	20	22	28
(watts)										
Noise output (db)	10	12	15	18	20	22	27	30	32	34

- a) Find the correlation coefficient between the power consumed and noise output and comment on it. (10 marks)
- b) Find the regression equation of noise on power consumed and use it to approximate the noise level when 25 watts of power are consumed. (10 marks)

Question Five

The following frequency distribution shows the number of computers bought by 60 private schools in Nairobi:

Number of computers bought	40 - 44	45 – 49	50 - 54	55 – 59	60 - 64
Number of Schools	6	10	25	11	8

a) Draw a histogram to represent the data.b) Determine the following for the data:	(4 marks)
(i) The mean(ii) The standard deviation(iii) The median the computers bought	(4 marks) (4 marks) (3 marks)
(iv) The interquartile range	(5 marks) (5 marks)