

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2204: STRENGTH OF MATERIALS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) and any other TWO questions
All questions carry equal marks
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (COMPULSORY)

a) Proof from simple bending theory that:

$$
\frac{M}{I}=\frac{E}{R}=\delta / y
$$

b) A copper rod of 40 mm diameter is surrounded tightly by a cost-iron tube of 80 mm external diameter the ends being firmly fastened together. When put to a compressive load of 30 KN :
(i) What load will be shared by each i.e. cast iron; copper rod
(ii) Determine the amount by which the compound bar shortens if it is 2 m long.

Take:

$$
\mathrm{E}_{\text {c.i }(\text { cast iron }}=175 \mathrm{GN} / \mathrm{m}^{2}
$$

$$
\mathrm{E}_{\text {copper }}=75 \mathrm{GN} / \mathrm{m}^{2}
$$

(11 marks)
c) Explain the sign convention for S.F and B.M diagrams.
d) Show the relation between:
(i) Young's modulus (E) and Bulk modulus (K)
(ii) Young modulus (E) and shear modulus (C)

Question Two

a) Derive the expressions for the following stresses on a inclined section through a body subjected ti direct stress in two mutually perpendicular directions:
(i) Normal stress
(ii) Shear stress
(14 marks)
b) A point in a strained material subjected to mutually perpendicular tensile stress of $60 \mathrm{~N} / \mathrm{mm} 2$ and $40 \mathrm{~N} / \mathrm{mm} 2$. Determine the following stresses on a section through the body inclined at 30 o with the vertical.
(6 marks)
(i) Normal stress
(ii) Shear stress
(iii) Resultant stress

Question Three

Describe a lab test to determine the tensile strength of a piece of mild steel reinforcement bar. Sketch out the apparatus used.
(20 marks)

Question Four

For the shaded area shown in figure 4 find the following:
a) The position of the centroid
b) The second moment of area about the base
c) The radius of gyration about the base.
(20 marks)

Question Five

Draw the shear force and bending diagrams for the beam shown I figure 5. Clearly mark the position of the maximum bending moment and determine its value.

B

