

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING HIGHER DIPLOMA IN BUILDING & CIVIL ENGINEERING

EBC 3215: STRUCTURAL STEEL & TIMBER DESIGN

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Drawing Paper
- Drawing Instruments

This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One

- a) Define the following as applied to structural timber:
 - (i) Basic stress
 - (ii) Modification factor
 - (iii) Permissible stress
 - (iv) Grade stress and state THREE methods of grading timber.
- b) Timber joists spaced at 2.5 centres are supported 200mm block walls over a clear span 3.0m. Select a suitable timber section of bending requirement and check for:
 - (i) Shear
 - (ii) Deflection
 - Permissible shear stress $1.2N/mm^2$ =
 - Span/300 Permissible deflection = _
 - Permissible bending stress = 10N/mm²
 - Medium term loading duration

Question Two

Figure 1 shows a U.N section supporting a uniformly distributed load of 30KN/m over the entire length.

- a) Select a suitable U.B section for bending.
 - (i) Shear
 - (ii) Web backling at A
 - (iii) Bearing at B
 - (iv) Deflection between A and B
 - Data:
 - Permissible shear stress 115N/mm² = Permissible bearing stress 190N/mm² =
 - -_ Permissible deflection = span/300
 - 210KN/mm² Esteel = _
 - $165N/mm^2$ Permissible bending stress =

(12 marks)

(8 marks)

(12 marks)

U.C

Question Three

- a) Define the following as applied to stanchions and illustrate diagrammatically:
 - (i) Effective length
 - (ii) Slenderness ratio
- b) An axially loaded stanchion of actual length 4.0 is to support a load of 400KN. The stanchion is fully fixed at bottom but pinned at top.
 - (i) Select a suitable U.C section and check its adequacy
 - (ii) Design stanchion base

Data:

$\mathbf{P}_{\mathrm{bct}}$	=	185N/mm ²
\mathbf{P}_{cc}	=	$5.3N/mm^2$
astion Farm		

Question Four

- a) State advantages of structural steel over reinforced concrete.
- b) Figure 2 shows an eccentrically loaded stanchion carrying an axial load of 200KN from upper floors. In addition, it carries a uniformly distributed load of 15KN/m from an incoming beam over a span of 4.0m. The stanchion has an actual length of 4.5m and is fully fixed at both ends. Select a suitable grade 43u.c. section and check its adequacy. (16 marks)

(6 marks)

(14 marks)

(4 marks)

© 2014 -Technical University of Mombasa

Question Five

- a) State advantages of welded and bolted connections.
- **b)** A U.B section of span 5.0m is supported on the u.c. sections by means of 15mm thick angle cleats at both ends. The beam carries a total load of 150KN over its entire span. Select a suitable U.B section for bending requirement and checks for:
 - (i) Shear
 - (ii) Deflection
 - (iii) Buckling
 - (iv) Bearing

Data

_

- Permissible bending stress 165N/mm² =
- Permissible bearing stress = 190N/mm² -
- Permissible deflection = _ Span/360
- E_{steel} -
 - 210KN/mm² = Permissible shear stress = 115N/mm²

(14 marks)

Page 4

(6 marks)