HIGHER DIPLOMA IN BUILDING AND CIVIL ENGINEERING (HD BC o8A)

END OF SEMESTER EXAMINATIONS

APRIL/MAY 2010 SERIES

HYDRAULICS, GEOLOGY AND SOIL MECHANICS

TIME: 3 HOURS

Instructions to Candidates

You should have the following for this examination:
Answer booklet
Calculator/Mathematical Tables

- This paper consists of EIGHT Questions in TWO Sections A and B.
- Answer FIVE Questions choosing at least TWO Questions from each Section.
- All questions carry equal marks.
- Maximum marks for each part of a question are as shown.

SECTION A : WATER SUPPLY AND WASTE WATER

Question ONE

(a). Sketch the following;
(i). Submerged crib intake
(ii). Canal Intake
(6 Marks)
(b). With the aid of a sketch, explain the chemical sedimentation process in water treatment.
(12 Marks)
(c). Define the following;
(i). Post chlorination
(ii). Flocculation
(2 Marks)

Question TWO

(a). With the aid of a line diagram outline the conventional process of sewage treatment.
(12 Marks)
(b). Differentiate the following:
(i). Combined system from separate system.
(ii). Effluent from sludge.
(iii). French drains from lagoons.
(iv). Tertiary treatment from pre-chlorination
(8 Marks)

Question THREE

(a). A venturimeter is installed in a horizontal pipeline of 30 cm diameter. The difference of pressure at entrance and throat, read by a mercury manometer is 5 cm ; when the water is flowing at a rate of $501 / \mathrm{s}$. The coefficient of discharge $\mathrm{cd}=0.96$.
Find the diameter of the throat.
(8 marks)
(b). A trapezoidal notch with a 30 cm base has sides inclined at 30° to the vertical. If the head causing flow is 16 cm and $c d=0.62$, find the discharge.
(c). A circular channel of 3 m diameter has a slope of 1:500. Chezy's C=50. Calculate the:
(i). Max discharge
(ii). Max velocity
(9 Marks)

Question FOUR

(a). Two reservoirs with their water level having a difference of 48 m are connected by a pipe 3 km long and 1.5 m diameter. To increase the system, a loop line 1 m dia and 1 km long is connected to the last 1 km of the pipeline. Calculate the increase in discharge due to the addition of the loop $f=0.008$.
(10 Marks)
(b). Briefly describe the hydrologic cycle.
(6 Marks)
(c). Sketch, label and show all the important dimensions of a USWB class A pan.
(4 Marks)

SECTION B: GEOLOGY AND SOIL MECHANICS

(Answer at least TWO Questions from this Section)

Question FIVE

(a). Referring to the given geological map (fig.A)
(i). Draw and label all strike lines
(ii). Draw a topographical section from X-Y
(iii). Find Dip and Strike of the beds
(iv). Write a brief geological History of the site
(15 Marks)
(b). Differentiate between the following:
(i). Normal and Reverse fault
(ii). Crystal and mineral
(iii). Streak and Lustre
(iv). Cleavage and parting
(v). Porphyritic and Granoblastic
(5 Marks)

Question SIX

(a). A footing 3 m square is to be located at a depth of 1.5 m in a sand deposit, the water table being 3.5 m below the surface. Values of standard penetration resistance were determined as detailed in Table 1. Determine the allowable bearing capacity. Take $\gamma=17 \mathrm{~N} / \mathrm{m}^{3}$ and $\gamma^{1}=10 \mathrm{KN} / \mathrm{m}^{3}$. Use figure 2 and 3.

Table 1

Depth (m)	\mathbf{N}
0.75	8
1.55	7
2.30	9
3.00	13
3.70	12
4.45	16
5.20	20

(10 Marks)
(b). A shear box test gave the following results:

Table 2

Vertical Load (kg)	Divisions of proving ring dial gauge (one division to 1).
36.8	16
73.6	26
110.4	35
147.2	44

If the shear box is 60 mm square and the proving ring constant $20 \mathrm{~N} \mu \mathrm{~m}$, determine the apparent cohesion and the angle of internal friction for the soil.
(10 Marks)

Question SEVEN

(a). A laboratory test was carried out on a soil sample of specific gravity 2.65 and volume $0.01 \mathrm{~m}^{3}$. The following results were obtained:

Mass of wet soil $=\quad 20.6 \mathrm{~kg}$
Mass of oven dried soil $=17.0 \mathrm{~kg}$
Calculate:-
(i). Saturated density of the sample
(ii). Porosity
(iii). Void ratio
(iv). Degree of saturation
(v). Critical hydraulic gradient
(10 $1 / 2$ Marks)
(b). A sheetpile wall is driven to a depth of 6 m in permeable soil, extending to a depth of 14 m below the ground level. Below this depth is an impermeable stratum. If the depth of water is 4.5 m on one side of the sheet pile wall, make a neat sketch of the flow net and determine the seepage under the sheetpile wall in litres per day. Take permeability of the soil as $7.5 \times 10^{-3} \mathrm{~mm} / \mathrm{s}$.
($911 / 2$ Marks)

Question EIGHT

(a). State SIX assumptions made in Terzaghi's theory of Onedimensional consolidation.
(6 Marks)
(b). Fig. 1 refers to a retaining wall. Determine the following:
(i). The shear force in KN at the base of the wall so as to prevent its movement away from the backfill.
(ii). The height of total horizontal thrust above the base.
(14 Marks)

Fig. 1

