

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 12M) DIPLOMA IN ARCHITECTURE (DA 13M)

EBC 2202: THEORY OF STRUCURES I

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Drawing Paper
- Drawing Instruments

This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions

All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One

A T-section 150mm x 120mm x 20mm is used to strut of 4m long with hinged at its both ends calculate the crippling load, if Young's modulus for the material be 200Gpa. (20 marks)

Question Two

Figure 1 show a column of rectangular section loaded in a number of different ways. Calculate the combined direct and bending stress in the extreme fibres at each corners of the section. **(20 marks)**

80mm 300mm 30mm 120mm

Question Three

A simply supported steel beam is subject to the combined application of an axial tension and a lateral load as shown in figure 2. The beam consists of a joist section having the following properties.

Depth = 152mm, area = 2180mm², second moment of area 8.81×10^6 mm⁴

Calculate the maximum compressive and tensile stresses acting in the beam. (20 marks)

160KN

Question Four

Using Macaulay's method, determine the position and magnitude of the maximum deflection for the beam loaded as shown in figure 3. Give $E = 250 \text{KN/m}^2$ and $I = 170 \times 106 \text{mm}^4$. (20 marks)

Question Five

Find the Euler's crippling load for a hollow cylindrical steel column of 38mm external diameter and 2.5mm thick. Take length of column as 2.3m and hinged at its both ends. Take $E = 2.05 \times 10^3 \text{KN/mm}^2$.

Also determine the crippling load by Rankine's formula, using constant as 3.35KN/mm² and 1/7500. **(20 marks)**