

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2408: THEORY OF STRUCTURES V
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Drawing Instruments

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) in section A and any other TWO questions from section B Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

SECTION A

Question One (Compulsory)
a) With the aid of labeled sketches, outline the concept of the finite element method.
(10 marks)
b) Develop the stiffness matrix for the beam element shown in figure Q1 (b) with respect to the coordinates 1 and 2.
(10 marks)
c) Outline the main merit and limitations of the finite element method
(10 marks)

SECTION B (Attempt any TWO questions)

Question Two

Analyze the fixed beam shown in figure Q2 by the matrix stiffness method. Sketch the bending moment diagram
(20 marks)

Question Three

a) Develop the stiffness matrix for a rod element whose length is " l " modulus of elasticity " E " and crosssectional area "A". The ends of the rod element are subjected to axial forces P_{1} and P_{2} resulting in displacements u_{1} and u_{2} respectively. Explain all the terms of the stiffness matrix.
(10 marks)
b) Figure Q3 (b) shows a structure composed of two structural elements modeled as two springs of different stiffness connected in series. Develop the structural or system stiffness matrix for the three co-ordinate shown.
(10 marks)

Question Four

Analyze the continuous beam shown in figure Q4 by the stiffness matrix method and sketch the bending moment diagram.
(20 marks)

Question Five

A beam is fixed at its ends and subjected to moments M_{1} and M_{2} resulting in rotations Q_{1} and Q_{2} respectively. In addition, the beam experiences vertical forces Y_{1} and Y_{2} resulting in vertical displacements V_{1} and V_{2} at modes 1 and 2 respectively. Develop the element stiffness matrix for the beam. (Hint: derive the slope-deflection equations first)
(20 marks)

