TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS I BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY (BTAP/BTRE)

APS 4204: THERMAL PHYSICS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Explain THREE means of heat transfer and give application of each
b) State Stefan's Law
c) Determine the change in entropy of 3 kg of water at $100^{\circ} \mathrm{C}$ (Specific latent heat of vaporization of water $=2.26 \times 106 \mathrm{Jkg}^{-1}$ at $100^{\circ} \mathrm{C}$)
d) State and explain the principle of increase of entropy
e) Define the following terms:
(i) Endothermic
(ii) Adiabatic
(iii) Exothermic
f) Explain the heat engine cycle of operation
(4 marks) Question Two
a) State the second law of thermodynamics
(2 marks)
b) 5 kg of water are heated from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ by being placed in contact with a body which has a large heat capacity and which is itself at $100^{\circ} \mathrm{C}$. Determine changes in entropy of:
(i) Water
(ii) Universe
(Specific heat capacity of water in the range $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}=4.2 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$
(10 marks)
c) Explain conduction mechanism in:
(i) Gases
(ii) Non-metallic solids and liquids
(iii) Metals
(8 marks)

Question Three

a) Explain what is meant by black body and black body radiation
(4 marks)
b) A 100 w electric light bulb has a filament which is 0.6 m long and has a diameter of $8.0 \times 10^{-5} \mathrm{~m}$. Estimate the working temperature of the filament if its total emissivity is 0.7 (Stefan's constant $=5.7 \mathrm{x}$ $108 \mathrm{Nm}^{-2} \mathrm{k}^{-4}$)
c) Determine
(i) Increase in enthalpy and:
(ii) Increase in internal energy when 4 kg of water at $100^{\circ} \mathrm{C}$ and pressure of $1.013 \times 10^{5} \mathrm{~Pa}$ is turned into steam at the same temperatures and pressure (Specific enthalpy change for the conversion of water to steam at $100^{\circ} \mathrm{C}=2.261 \times 10^{6} \mathrm{Jkg}^{-1}$, specific volume of water at $100^{\circ} \mathrm{C}=1.637 \mathrm{~m}^{3} \mathrm{~kg}^{-1}$)
(10 marks)

Question Four

a) Determine the volume of 1 mole of gas at STP $\left(\mathrm{R}=8.31 \mathrm{Jkg}^{-1} \mathrm{~mol}^{-1}\right)$
b) Sketch a PV diagram of idealized diesel and explain the cycle and operations.
c) (i) Explain FOUR disadvantages, of liquid-in-glass thermometers.
(4 marks)
(ii) Discuss THREE advantages of mercury as a thermometric liquid

Question Five

a) State Avogadro's Law
b) A quantity of low-density gas in a rigid container is initially at room temperature $\left(20^{\circ} \mathrm{C}\right)$ and a particular pressure (P). If the gas is heated to a temperature of $60^{\circ} \mathrm{C}$ by what factor does the pressure change?
c) A particular resistance thermometer has a resistance of 30Ω at the ice point 41.58Ω at the steam point and 34.5Ω when immersed in a boiling liquid. A constant volume gas thermometer gives readings of $1.333 \times 10^{5} \mathrm{~Pa}, 1.821 \times 10^{5} \mathrm{~Pa}$ and $1.528 \times 10^{5} \mathrm{~Pa}$, at the same three temperatures. Determine the temperature at which the liquid is boiling:
(i) On the scale of gas thermometer
(ii) On the scale of resistance thermometer
d) Explain Newton's Law of Cooling

