

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE Faculty of Engineering

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN CIVIL ENGINEERING

MEASUREMENT, ESTIMATING AND COSTING

END OF SEMESTER I EXAMINATION

SERIES: APRIL/MAY 2010

TIME: 3 HOURS

Instructions to Candidates:

You should have the following for this examination:

- Answer Booklet
- Pocket Calculator
- Dimension papers
- A copy of the Standard Method of Measurement of Building Works (SMM)
- A copy of the Civil Engineering Standard Method of Measurement (CESMM)

This paper consists of **SIX** questions in **TWO** sections **A** and **B**.

Answer any **TWO** questions from each Section.

Question in Section **A** carry 30 marks each while those in Section **B** carry 20 marks each.

Maximum marks for part of question are as shown.

SECTION A: MEASUREMENT

(Answer any **TWO** questions from this section.)

- Q.1 Take off **all** quantities for the Substructure works for Fish Pond shown in drawing No.01. (30 marks)
- Q.2 A cutting is to be excavated for a road 360M in length and 20M in width, to an even gradient with mean depths calculated at 60M intervals as indicated below and side slopes 2 to 1. Prepare a table for the cutting and take off quantities for the excavations. **(use CESMM).**

CROSS SECTION	1	2	3	4	5	6	7
MEAN DEPTH (M)	4	9	15	18	16	14	8

- Q.3 (a) With suitable illustrations, explain how the following are used in the Traditional method of Bill of Quantities preparation.
 - Grouping of dimensions
 - Grouping of descriptions
 - Dotting-onDitto. (12 marks)
 - (b) Give **SIX** purposes of a Bill Quantities with a brief explanation of

each. (18 marks)

SECTION B: ESTIMATING AND COSTING

(Answer any **TWO** questions from this Section)

Use the information in Appendix 'A' for price build-up. Assume any other necessary information.

Q.4	(a)	List the FIVE main factors to be considered in the build-up of a unit rate.	(12 marks)
	(b)		
		All-in-labour rate.Owning and operating costs for Plant.	(8 marks)
Q.5	.5 Build up unit rates for the following items:-		
	(a)	Excavate foundation trench not exceeding 1.50m deep. [CM]	(10 marks)
	(b)	Mass concrete 1:3:6 in strip foundations. (CM)	(10 marks)

Q.6 (a) Build up the hourly rate of owning and operating a 200 liter capacity concrete mixer using the following information:-

•	Purchase of new mixer	Kshs.1,600,000.00	
•	Salvage value after six (6) years	Kshs.185,000.00	
•	Cost of transport per year	Kshs.40,000.00	
•	Interest and Insurance per year	30% of annual depreciation	
•	Maintenance and repairs per year	20% of annual depreciation	
•	Annual working time	2000 hours	
	Fuel per 8 hour working day	Kshs.2,400,006. (16 marks)	

(b) If the concrete mixer in question 2(a) above has a time cycle of 5 minutes, calculate its output. (

(4 marks)

DATA FOR USE IN ESTIMATING AND COSTING

All-in Skilled labour rate per hour	sh.90.00			
All-in unskilled labour rate per hour	sh.80.00			
Labour constants:				
Excavate top soil average 150mm deep per SM	0.35 hrs			
Excavate to reduce levels average 150mm deep per SM	0.45 hrs			
Excavate to reduce levels average 200mm deep per CM	2.40 hrs			
Excavate foundation trench not exceeding 1.50m deep per CM	3.25 hrs			
Excavate foundation trench exceeding 1.50m but not exceeding				
3.00m deep per CM.	6.50 hrs			
Excavate pit for isolated base not exceeding 1.50m deep per CM	5.00 hrs			
Excavate pit for isolated base exceeding 1.50m but not exceeding				
3.00m deep per CM	10.00 hrs			
Offloading cement in 50 Kg. bags per ton	1.50 hrs			
Mixing, transporting, placing and compacting concrete in foundation	on			
trenches not exceeding 150mm thick per CM	4.66 hrs			
Mixing, transporting, placing and compacting concrete in foundation				
trenches 150-300mm thick per CM	4.33 hrs			
Materials:				
Cement in 50 Kg. bags delivered to site	sh.700.00			
Fine aggregate (sand) per ton delivered to site	sh.800.00			
Ballast per ton delivered to site	sh.1,800.00			
Density of Cement	1442 Kg.			
Density of Sand	1600 Kg.			
Density of Ballast	1550 Kg.			
Waste on concrete materials	10%			
Shrinkage and voids in concrete	40%			
Overheads and Profit	20%			