

TECHNICAL UNIVERISTY OF MOMBASA

Faculty of Engineering & Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY (BSIT M11/M12/EV/FT)

ICS 2301: DESIGN & ANALYSIS OF ALGORITHMS

END OF SEMESTER EXAMINATION SERIES: APRIL 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer Booklet

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a)) Define the following terms: (i) Algorithm (ii) An instance of a problem (iii) Loop invariant 	(6 marks)
b)) State any FOUR characteristics of a good algorithm.	(4 marks)
c)) Discuss the algorithm design and analysis process with suitable examp	ple in each step. (8 marks)
d)	Explain the concept of symptotic notations indicating the commonly u significance.	used notations and their (6 marks)
e)) What is an optimization problem?	(2 marks)

- f) What is the formula for the variable count in terms of n after the following algorithm fragment in executed? (4 marks)
 - (i) Count = 0;
 - (ii) For i = 1 through n do
 - (iii) For P = 1 through 3 do
 - (iv) For K = 1 through i do
 - (v) Count = count + I; End for loops;

Question Two

- a) State the three loop invariance property that prove the algorithm is correct. (6 marks)
- **b)** Consider the following insertion sort algorithm.

```
    For i 2 to length [A]
    Key ← A [i]
    // Insett A [i] into the sorted sequence A[1..2-1]
    j i-i
    while j >0 and A [j] > key
    A [j + 1] A[j]
    j - 1 ←
    8 A [j + 1] key
```

- (i) State a loop invariant for the outer for loop.
 (ii) State a loop invariant for the inner for loop
 (1 mark)
 (1 mark)
 (1 mark)
 (6 marks)
- c) Write bubble sort algorithm and apply it to sort the list E, X, A, M, P, L, E (6 marks)

Question Three

- a) State any **THREE** factors that influence the running time of an algorithm. (3 marks)
- **b)** Compute the big –Oh running time of the following code segment. (3 marks)

```
For (i = 2; i<n; i ++) {
Sum + = i;
}
```

- c) Give an algorithm for quick sort and trace the algorithm with an example. Analyze its time complexity.
 (8 marks)
- **d)** (i) Define recursion.

(ii) Compare recursion algorithm with iterative functions; use a high level language piece of code or pseudo code to demonstrate the difference. (4 marks)

(2 marks)

Question Four

a) Examine the following piece of code; associate a "cost" with each statement and find the "total cost" by calculating the total number of times each statement is executed. (4 marks)

Inst	code
i)	For (int i = 0; i <n; ++)<="" i="" th=""></n;>
ii)	For int j = 0; j< n; j++)
iii)	{count << i;
iv)	P = p + i:
	}

b)	Explain any TWO practical applications of problem solved by algorithms	(2 marks)		
c)	Differentiate between Deterministic and Non Deterministic algorithms.	(2 marks)		
d)	Describe the divide and conquer approach to solve a programming problem.	(6 marks)		
e)	Discuss the following algorithm design techniques.(i) Dynamic programming(ii) Back tracking	(2 marks) (2 marks)		
f)	How would you specify a computational problem?	(2 marks)		
Qı	Question Five			
a)	Give an algorithm for merge sort and trace the operation for the following sequence. 6, 2, 4, 6, 1, 3, 2, 6. Brief on its complexity.	(8 marks)		
b)	Briefly explain how big oh notation models asymptotic growth rate.	(4 marks)		
c)	Discuss the greedy method.	(4 marks)		
d)	What is a Brute force method? When does a brute force method becomes applicable.	(4 marks)		