THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT)
Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR BACHELOR OF TECHNOLOGY (INFORMATION TECHNOLOGY)

ICS 2211: NUMERICAL LINEAR ALGEBRA
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MAY/JUNE 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown
This paper consists of FOUR printed pages

Question 1 (Compulsory - 30 Marks)

$$
A=\left[\begin{array}{cccc}
-2 & 1 & -1 & 4 \\
1 & 2 & 3 & 13 \\
3 & 0 & 1 & -1
\end{array}\right]
$$

a) (i) Convert the following matrix to row-echelon form
(ii) Solve the following system of equations using your answer in a(i)

$$
\begin{aligned}
& -2 x+y-z=4 \\
& x+2 y+3 z=13 \\
& 3 x+z=-1
\end{aligned}
$$

b) Given

$$
A=\left[\begin{array}{ccccc}
6 & 0 & 0 & 0 & 0 \\
9 & -4 & 0 & 0 & 0 \\
-2 & 0 & 11 & 0 & 0 \\
1 & -1 & 3 & 0 & 0 \\
0 & 1 & -7 & 4 & 8
\end{array}\right]
$$

$$
\text { find the eigenvalues of } \mathrm{B}=\mathrm{A}^{2}
$$

c) (i) Obtain the inverse of the following matrix using the method of co-factors

$$
A=\left[\begin{array}{ccc}
3 & 1 & 0 \\
-1 & 2 & 2 \\
5 & 0 & -1
\end{array}\right]
$$

(ii) Use your answer in b(ii) above to solve the following system of equations

$$
\begin{aligned}
3 x+y & =6 \\
-x+2 y+2 z & =-7 \\
5 x-z & =10
\end{aligned}
$$

b) Determine an LU-Decomposition of the following matrix

$$
A=\left[\begin{array}{ccc}
3 & 6 & -9 \\
2 & 5 & -3 \\
-4 & 1 & 10
\end{array}\right]
$$

Question 2 (20 Marks
a) Use row reduction to compute the determinant of the following matrix

$$
A=\left[\begin{array}{cccc}
3 & 0 & 6 & -3 \\
0 & 2 & 3 & 0 \\
-4 & -7 & 2 & 0 \\
2 & 0 & 1 & 10
\end{array}\right]
$$

b) Use Cramer's rule to determine the following system of equations:

$$
\begin{aligned}
& 3 x_{1}-x_{2}+5 x_{3}=-2 \\
& -4 x_{1}+x_{2}+7 x_{3}=10 \\
& 2 x_{1}+4 x-x_{3}=
\end{aligned}
$$

c) Solve the following system of equations using the Gauss-Jordan method

$$
\begin{gathered}
2 x_{1}-x_{2}+2 x_{3}=12 \\
x_{1}+2 x+3 x_{3}=11 \\
2 x_{1}-2 x_{2}-x_{3}=2
\end{gathered}
$$

Question 3 (20 Marks)

a) Use row reduction to obtain the inverse of the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & -3 \\
4 & 1 & 8
\end{array}\right]
$$

b) Determine the eigenvalues and corresponding eigenvectors for the following matrix:

$$
A=\left[\begin{array}{cc}
6 & 16 \\
-1 & -4
\end{array}\right]
$$

c) Use 3-digit rounded precision and pivoting to solve the system $\mathrm{Ax}=\mathrm{b}$ given

$$
A=\left[\begin{array}{ccc}
3.02 & -1.05 & 2.53 \\
4.33 & 0.56 & -1.78 \\
-0.83 & -0.54 & 1.47
\end{array}\right] \text { and } B=\left[\begin{array}{c}
-1.61 \\
7.23 \\
-3.38
\end{array}\right]
$$

Question 4 (20 Marks)

Given the following system of equations

$$
\begin{aligned}
& 8 x_{1}+x_{2}-x_{3}=8 \\
& 2 x_{1}+x_{2}+9 x_{3}=12 \\
& x 1-7 x_{2}+2 x_{3}=-3
\end{aligned}
$$

(i) Determine the initial solution equations for use by method of iteration
(ii) Determine the Gauss-Sidell iteration equations

$$
x_{1}=x_{2}=x_{3}=0
$$

(iii) Solve the system by Gauss-Seidel iterative method starting with

Question 5 (20 Marks)

a) Explain the terms:
(i) Pivoting,
(ii) Ill-conditioned systems as applied to solution of equations

$$
A=\left[\begin{array}{ccc}
-0.002 & 4.000 & 4.000 \\
-2.000 & 2.906 & -5.387 \\
3.000 & -4.031 & -3.112
\end{array}\right], B=\left[\begin{array}{c}
7.988 \\
-4.481 \\
-4.143
\end{array}\right]
$$

b) Consider the sytem $\mathrm{Ax}=\mathrm{b}$ where
(i) Using a three-digit chopped arithmetic, solve for x
(ii) Given that determine and (3 marks)
(iii) Is the system ill-conditioned? (Verify your answer)

