THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A Constituent College of JKUAT)

(A Centre of Excellence) Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE IN BACHELOR OF TECHNOLOGY

ICS 2211: NUMERICAL LINEAR ALGEBRA

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2012
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)
Question One (30 marks)
a) Evaluate:

$$
\left|\begin{array}{cccc}
2 & 5 & -3 & -2 \\
-2 & -3 & 2 & -5 \\
1 & 3 & -2 & 2 \\
-1 & -6 & 4 & 3
\end{array}\right|
$$

b) Use Cramer's rule to solve the simultaneous equations:

$$
\begin{aligned}
& 2 x+5 y=4 \\
& -3 x-4 y=1
\end{aligned}
$$

$$
\left[\begin{array}{cc}
6 & 5 \\
-7 & -6
\end{array}\right]^{2}
$$

c) Evaluate
and hence solve the simultaneous equations.

$$
\begin{aligned}
& 6 x+5 y=7 \\
& 7 x+6 y=8
\end{aligned}
$$

$$
A=\left[\begin{array}{ccccc}
5 & 0 & 0 & 0 & 0 \\
8 & -3 & 0 & 0 & 0 \\
-3 & 0 & 10 & 0 & 0 \\
0 & -2 & 2 & 0 & 0 \\
1 & 0 & -8 & 3 & 9
\end{array}\right]
$$

d) Given
e) Determine an LU-Decomposition of the following matrix.

$$
\underset{\sim}{A}=\left[\begin{array}{ccc}
4 & 7 & -8 \tag{6marks}\\
3 & 6 & -2 \\
-3 & 2 & 11
\end{array}\right]
$$

f) Find the eigen values and the corresponding eigenvectors of the matrix

$$
\left[\begin{array}{ll}
4 & 2 \\
3 & 5
\end{array}\right]
$$

SECTION B (Answer any TWO questions from this section)

Question Two (20 marks)
a) Use row reduction to reduce the system given below into an upper triangular matrix and solve it.

$$
\begin{aligned}
& 3 x_{1}-4 x_{2}+x_{3}=5 \\
& -x_{1}+3 x_{2}+5 x_{3}=16 \\
& 4 x_{1}+2 x_{2}-6 x_{3}=-8
\end{aligned}
$$

b) Use the Adjoint matrix method to solve the simultaneous equations.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}-4 x_{3}=5 \\
& -4 x_{2}+2 x_{3}=-8 \\
& x 1-x_{2}+5 x_{3}=9
\end{aligned}
$$

Question Three (20 marks)

a) Find the eigenvalues and eigenvectors for the matrix:

$$
A=\left[\begin{array}{ccc}
4 & 0 & 1 \\
-1 & -6 & -2 \\
5 & 0 & 0
\end{array}\right]
$$

b) Use Cramer's rule to solve the system of linear equation:

$$
\begin{aligned}
& 2 x+3 y-z=1 \\
& 3 x+5 y+2 z=8 \\
& x-2 y-3 z=-1
\end{aligned}
$$

Question Four (20 marks)

$$
A=\left[\begin{array}{cc}
-6 & 4 \\
6 & 2
\end{array}\right] \quad P(A)=-5 x^{2}+9 x-8
$$

a) Given that
, evaluate
b) Convert the following matrix into row-echelon form.

$$
\left[\begin{array}{cccc}
-2 & 1 & -1 & 4 \\
1 & 2 & 3 & 13 \\
3 & 0 & 1 & -1
\end{array}\right]
$$

c) Solve the following system of equations using your result in 4(b)

$$
\begin{aligned}
& -2 x+y-z=4 \\
& x+2 y+3 z=13 \\
& 3 x+z=-1
\end{aligned}
$$

$$
\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
9 & 5 & 4
\end{array}\right]
$$

d) Use row reduction to find the inverse of the matrix
a) The solution to the system of equations having the form $\mathrm{AX}=\mathrm{B}$ can be found by matrix multiplication.

$$
X=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-2 & 1 & 2 \\
2 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
4
\end{array}\right]
$$

i) Find the original system of equations
ii) Find the solution of the system
$\left[\begin{array}{lll}2 & 3 & 3 \\ 1 & 2 & 2 \\ 4 & 5 & 7\end{array}\right]$
iii) Find the cofactor matrix of and hence find its inverse
b) Define the term pivoting as used in solutions of equations

