

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR DECREE IN:
 BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2312: HYDRAULICS II
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Pocket Calculator

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown Use neat, large and well labeled diagrams where required This paper consists of TWO printed pages

Question One

a) List the classification characteristics of centrifugal pumps
b) Show that for a centrifugal pump running at a speed Nrpm and delivering a discharge $\mathrm{Qm}^{3} / \mathrm{sec}$, if the speed is changed to $N_{1} \mathrm{rpm}$ the new discharge Q_{1} will be given by the relationship $\mathrm{Q}_{1}=\mathrm{QN}_{1} / \mathrm{N}$
c) Distinguish between the specific speed of a pump and that of a turbine
d) Derive the Lagrange celerity equation for the propagation of small waves in rectangular channels
(17 marks)

Question Two

A Pelton wheel running at 480r.p.m and operating under an available head of 420 m is required to develop 4800 kW . There are two equal jets and the bucket deflection angle is 165 o . The overall efficiency is 85 percent when the water is discharged from the wheel in a direction parallel to the axis of rotation. The coefficient of velocity of nozzle $=0.97$ and blade speed ratio $=0.46$. The relative velocity of water at exit from the bucket is 0.86 times the relative velocity at inlet. Calculate:
a) Cross-sectional area of each jet
b) Bucket pit h circle diameter, and;
c) Hydraulic efficiency of the turbine

(20 marks)

Question Three

In a inward flow reaction turbine the head on the turbine is 32 m . The external and internal diameters are 1.44 m and 0.72 m . The velocity of flow through the runner is constant and equal to $3 \mathrm{~m} / \mathrm{s}$. The guide blade angles is 10° and the runner vanes are rigid at inlet. If the discharge at outlet is radial, determine:
a) The speed of the turbine
b) The vane angle at outlet of the runner, and
c) Hydraulic efficiency
(20 marks)

Question Four

A Pelton wheel nozzle, for which $\mathrm{C}_{\mathrm{v}}=0.97$, is 400 m below the water surface of a lake. The jet diameter is

$$
h_{f}=\frac{f L V^{2}}{D \times 2 g}
$$

80 mm , the pipe diameter is 0.6 m , its length is 4 km and $\mathrm{f}=0.0 .032$ in the formula . The buckets deflect the jet through 1650 and they run at 0.48 times the jet speed, bucket friction reducing the relative velocity at outlet by 15 percent of the relative velocity at inlet. Mechanical efficiency $=90 \%$. Determine:
a) The flow rate, and
b) The shaft power developed by the turbine
(20 marks)

Question Five

A centrifugal pump lifts water under a static head of 36 m of water of which 4 m is suction lift. Suction and delivery pipes are both 150 mm in diameter. The head loss in suction pipe is 1.8 m and in delivery pipe 7 m . The impeller is 380 mm in diameter and 25 mm wide at mouth and revolves at $1,200 \mathrm{rpm}$. Its exit blade angle is 350 . If the manometric efficiency of the pump is 82%, determine:
a) The discharge through the pump
b) The pressure at the suction and delivery branches of the pump

(20 marks)

