

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology in Conjunction with Kenya Institute of Highways and Building & Technology (KIHBT)

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

HIGHER DIPLOMA IN BUILDING AND CIVIL ECONOMICS

HYDRAULICS I

SEMESTER EXAMINATIONS

SERIES: AUGUST 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of **TWO** sections **I** and **II**

Section **I** has **30** marks and section **II** has 40 marks

Attempt all questions in section I and only **TWO** questions from section **II** This paper consists of **THREE** printed pages

SECTION I – 30 marks

Question 1

- a) Define the following terms:
 - i) Hydrology
 - ii) Hail
 - iii) Drizzle
 - iv) Rain
 - v) Rainfall intensity
 - vi) Isohyets
 - vii) Evapotranspiration
 - viii) Hydrograph
- b) With the aid of a sketch briefly describe the hydrological cycle (8 marks)
- c) Make a labeled sketch of a standard raingauge showing all important dimensions

(6 marks)

(16 marks)

SECTION II (Answer any TWO questions – 40 marks)

Question 2

a) State FOUR factors	considered when selecting	g a site for a raingauge s	tation (4 marks)
------------------------------	---------------------------	----------------------------	------------------

b) State **FOUR** advantages of recording raingauges (4 marks)

c) Outline the procedure of calculating the depth of rainfall using a standard raingauge

(4 marks)

(8 marks)

d) The rainfall data in table 1 were obtained for a catchment using Thiessen polygon method

Station	А	В	С	D	E
Polygon area (ha)	518	777	906	1495	748
Observed rainfall (mm)	267	198	142	114	81

Table 1

Estimate the average depth of rainfall in the catchment

Question 3

- a) Define the following types of streams
 - i) Influent
 - ii) Effluent
 - iii) Intermittent
 - iv) Ephemeral
 - v) Perennial

(10 marks)

b) Briefly explain **FIVE** factors that influence the quantity of runoff from a catchment

marks) **Question 4**

a) The rainfall intensities for a certain storm were recorded at 20 minute intervals as follows: 2.5, 2.5, 10.0, 7.5, 1.25, 1.25, 5.0 cm/hr

ø

If the net index is 3.2cm/hr, construct a hyetograph and hence calculate:

- (i) The net runoff in cm
- (ii) Total rainfall
- (iii) Value of w-index
- b) Define the following terms
 - i) Infiltration
 - ii) Percolation
 - iii) Infiltration capacity
 - iv) Unit hydrograph
 - v) Runoff coefficient

Question 5

a) The data in table 2 was obtained during a stream flow measurement exercise

Distance from temporary		1.5	3.3	5.1	7.1	9.3
Benchmark at the bank of the stream (cm)						
Depth of vertical (m)		0.6	1.2	0.8	0.6	0
Mean velocity in vertical (m/s)		0.72	1.31	0.83	0.68	0

Table 2

Using the mean section method, calculate;

- (i) The stream flow
- (ii) The mean velocity of flow
- b) A well of 1.0m diameter penetrates fully into a confined aquifer of 20m thickness and a hydraulic conductivity of 8.2×10^{-4} m/s. The radius of influence is not to exceed 260m. If the drawdown in the well is not to exceed 3m, determine the maximum yield. (6 marks)
- c)

(14 marks)

(10 marks)

(10 marks)