TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Engineering \&
 Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2305: HYDRAULICS I

END OF SEMESTER EXAMINATION

SERIES: AUGUST 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) in section A and any other TWO questions from section B
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

SECTION A

Question One (Compulsory)

a) Differentiate between critical depth and a hydraulic jump.
(2 marks)
b) By differentiating the specific energy equation and equating to zero show that the critical depth y_{c} is given by:

$$
y_{c}=\frac{v_{c}^{z}}{2 g}
$$

(6 marks)
c) A channel of 5 m wide is discharging $20 \mathrm{~m}^{3} / \mathrm{s}$ of water. Calculate the depth of water, when the specific energy of the flowing water is minimum
(4 marks)
d) A cement lined rectangular channel 6 m wide carries water at the rate of $15 \mathrm{~m}^{3} / \mathrm{s}$.
(i) Calculate the critical depth and;
(ii) Critical velocity
e) A rectangular channel 2.4 m wide is provided with a venturiflume of 1.5 m wide throat. Calculate the quantity of water flowing through the venturiflume, when the depth of water into upstream side is 1.2 m and that the throat is 0.9 m . Take coefficient of ventriflume as 1 .
(8 marks)

SECTION B (Attempt any TWO questions)

Question Two

Determine the normal flow depth in a trapezoidal channel with side slopes 1 in 1.5, bottom width 7.6 m and channel slope 0.00088 , and if the discharge is $42 \mathrm{~m}^{3} / \mathrm{s}$ and manning roughness coefficient is 0.02 .
(20 marks)

Question Three

a) An oil having kinematic viscosity of 21.4 stokes is flowing through a pipe of 300 mm diameter. Calculate the type of flow, if the discharge through the pipe is 15 litres/s
(11 marks)
b) Discuss the THREE types of hydraulic similarities or hydraulic similitude in model analysis.
(9 marks)

Question Four

a) A model of spillway is constructed to a scale of $1: 30$ in a flume. The length of the spillway is 30 m . if the discharge over the spillway at the head of 6 m (depth of flow over spillway) is $443.6 \mathrm{~m}^{3} / \mathrm{s}$. Calculate the corresponding head and discharge of the model required for this model study.
(6 marks)
b) A dam 35 m long is to discharge water at the rate of $114 \mathrm{~m}^{3} / \mathrm{s}$ under a head of 2.7 m . calculate:
(i) The length of the model and
(ii) Head of water if the supply available in the laboratory is 30 litres/s
(6 marks)
c) A turbine model of scale $1: 10$ is running at 475 r .p.m under a head of 20 m . calculate the speed of the actual turbine
(2 marks)
d) Machio dam in Japan was modeled with a model scale of $1 / 60$. The prototype is an ogee spillway designed to carry a flood of $3200 \mathrm{~m}^{3} / \mathrm{s}$.
(i) Calculate the discharge of the model for the designed flood in $\mathrm{m}^{3} / \mathrm{s}$.
(ii) What time in the model is represented by one day in the prototype?
(12 marks)

Question Five

a) A weir of 8 m long is to be built across a rectangular channel to discharge a flow of $9 \mathrm{~m}^{3} / \mathrm{s}$. if the maximum depth of water on the upstream side of the weir is to be 2 m . Calculate the height of the weir. Adopt $\mathrm{C}_{\mathrm{d}}=0.62$.
(8 marks)
b) A sewer diameter 0.6 m has a slope s_{o} of 1 in 200. Calculate the:
(i) Maximum velocity of flow that can occur, and:
(ii) The discharge at this velocity Take C $=55$ SI units
c) Check the dimensional homogeneity of the following common equations in the field of hydraulics:
$C_{d} \cdot a \sqrt{2 g H}$
(i) $\mathrm{Q}=\quad$ 3 marks)
(ii)
(2marks)

