TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology in Conjunction with Kenya Institute of Highways Building \& Technology (KIHBT)

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING

EBE 3117: HYDRAULICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Scientific Calculator

This paper consists of FIVE questions. Answer question ONE (Compulsory) any other TWO questions Maximum marks for each part of a question are as shown
Use neat, large and well labeled diagrams where required
This paper consists of THREE printed pages
Question One (Compulsory)
a) Define the following terms using mathematical symbols/expressions where appropriate:
(i) Mass density
(ii) Unit weight
(iii) Relative density
(iv)Weight
(8 marks)
b) State the SI units for the quantities defined in 1(a)
c) A circular pipe 250 mm diameter carries an oil of specific gravity 0.8 at a rate of $1201 / \mathrm{s}$ and under a pressure of 20 Kpa . Calculate the total energy in m of oil at a point 3 m above datum ($\mathbf{6}$ marks)
d) State TWO assumptions made in deriving Bernoulli's theorem
(2 marks)

Question Two

a) (i) Write the equation for calculating Reynolds number and define all the terms:
(ii) Explain how turbulent and laminar flow can be differentiated using Reynolds number (7 marks)
b) A pipe 5 m long is inclined at an angle of 15° with the horizontal. The pipe is tapering with the smaller section, 80 mm in diameter at a level lower than the larger section which is 240 mm in diameter. If the velocity at the 80 mm diameter section is $1 \mathrm{~m} / \mathrm{s}$, determine the difference in pressure between the two sections (Ignore energy losses)
(9 marks)
c) Define the following in relation to moving liquid:
(i) Kinetic energy
(ii) Potential energy
(4 marks)

Question Three

a) Water flows through a 200 mm diameter pipe, which is 30 m long with a velocity of $3 \mathrm{~m} / \mathrm{s}$. Find the head lost due to friction using:
(i) Darcy's formula if $\mathrm{f}=0.01$
(ii) Chezy's formula if $\mathrm{c}=44.31$
b) Two reservoirs are connected by a straight pipe 150 m long. The first 60 m of the line is 75 mm diameter and the remaining length is 150 mm diameter. The change in size is sudden and the pipe entry and exit are sharp (sudden). The water surface level in the upper reservoir is 15 m above that of the lower reservoir. Assuming Darcys $\mathrm{f}=0.01$ for both pipes:
(i) Tabulate all the losses
(ii) Determine the flow rate
(11 marks)

Question Four

a) An irrigation channel of trapezoidal section with side slopes of 3 horizontal to 2 vertical is required to convey water at a rate of $10 \mathrm{~m}^{3} / \mathrm{s}$. It has a bed slope of $1: 600$ and manning's $\mathrm{n}=0.0133$. Determine the dimensions of the best section
(11 marks)
b) A channel has vertical walls 1.5 m apart and a semi-circular insert as shown in figure 1 . The depth of flow at the centre is 1.0 m and the bed. Slope is $1: 2000$. Assuming chezy's $C=50$, determine the discharge

1.0m

Question Five

a) The sides of a trapezoidal notch makes an angle of 22° with the vertical. The crest of the notch is 20 cm long and the head causing flow is 25 cm . If $\mathrm{C}_{\mathrm{d}}=0.6$, determine the discharge
(7 marks)
b) Water is flowing over a cippoletti well which has a base length of 2.0 m . The head causing flow is 64 cm and $C_{d}=0.62$. Determine the discharge in LPM
c) Differentiate a 'notch' from a weir' in relation to:
(i) Material of construction
(ii) Size
(iii) Where it is used marks)
d) State THREE conditions to be met while installing a rectangular notch
(3 marks)

