

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIECE
 BACHELOR OF ENGINEERING IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN BUILDING \& CIVIL ENGINEERING

SMA 2171: GEOMETRY

SPECIAL/SUPPLEMENTARY EXAMINATION
 SERIES: MARCH 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)
a) ABCD is a rhombus. A is the point $(2,-1)$ and C is the point $(4,9)$. Find the equation of the diagonal (3 marks)

$$
-300^{\circ} \leq x^{\circ} \leq 400^{\circ} \sin (x+20)+\sin (x+80)=1.5
$$

b) Solve within

$$
r=4 a \cot \theta \operatorname{cosec} \theta
$$

c) Find the Cartesian equation of the locus

$$
\angle A B C=\cos ^{-1} \frac{59}{62}
$$

d) In triangle $A B C, A B=24 \mathrm{~cm}, A C=11 \mathrm{~cm}$ and
. Find two possible values of BC.
(5 marks)
e) Find the equation of the circle whose centre is on the x-axis and which passes through the points $(0,3)$ and $(4,1)$
(5 marks)

$$
y=\cos x \quad y=\sin (x+30)
$$

f) Sketch and on the same set of axes and state the phase angle difference. $y=\sin (x+30)$
Hence or otherwise express as a cosine function.

Question Two

$$
4 x+3 y=36 \quad x^{2}+y^{2}-4 x-2 y-20=0
$$

The line and the circle are given.
a) Show that the line touches the circle
b) Deduce the point of constant P and the equation of the normal to the circle through P ($\mathbf{3}$ marks)
c) Determine the centres of the two circles radii 6.5 cm passing through the centre of the given circle and the point of constant P in (ii) above.
(10 marks)
d) Express the equation of the circle in (iii) above with its centre below the x -axis in the form $a x^{2}+b y^{2}+c x+d y+e=0$
where a, b, c, d, e are integers.
(2 marks)

Question Three

a) If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle, show that:

$$
\begin{aligned}
& \sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \sin B \sin C \\
& t=\tan \frac{1}{2} \theta \\
& \sin \theta \quad \cos \theta
\end{aligned} \quad \tan \theta=\frac{2 t}{1-t^{2}}
$$

and in terms of t and hence show that
(10 marks)

$$
\frac{\cos B+\cos C}{\sin B-\sin C}=\cot \frac{B-C}{2}
$$

c) Prove that
(3 marks)
Question Four

$$
p\left(x_{1}, y_{1}\right)
$$

a) The normal at a point on an ellipse of eccentricity e meets the major axis at G. Prove that $G S=e P S$ where S is a focus.
(11 marks)

$$
x y=C^{2} \quad P(c t, c / t)
$$

b) Find the equation of the tangent to the rectangular hyperbola at the point that if this tangent meets the axes at Q and R , then P is the mid-point of QR .
and show (9 marks)

Question Five

a) Solve within the domain given:

(i) | $4 \cos ^{2} x+9 \sin x-6=0$ | $-200^{\circ} \leq x^{\circ} \leq 400^{\circ}$ |
| :--- | :--- |
| $2 \cos x-\sin x=1$ | $-360^{\circ} \leq x^{\circ} \leq 360^{\circ}$ |

(ii)
(6 marks)
(7 marks)

$$
4 x+3 y+3=0 \quad 7 x+24 y+6=0
$$

b) Given the lines and
(i) Calculate the angle from the first line to the second line
(ii) Determine the equations mediators of the angles between the two lines.

