TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
UPGRADING MATHEMATICS

AMA 1002: GEOMETRY
END OF SEMESTER EXAMINATION
SERIES: DECEMEBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) With the aid of sketches, explain the following angles:
(i) Complementary angles
(ii) Reflex angles
(iii) Supplementary
b) The figure below shows a circle ABCDE . The line FEG is a tangent to the circle at a point E. Line DE is parallel to CG, $\angle \mathrm{DEC}=28^{\circ}$ and $\angle \mathrm{AGE}=32^{\circ}$

Calculate $<$ AEG and $<\mathrm{ABC}$
(4 marks)
c) (i) Calculate the height of a tree if a person is 1.84 m tall, and is standing 16 m away from the foot of the tree, if the angle of elevation from his eye is 20°
(ii) Calculate all the angles in a triangle whose lengths are $5.5 \mathrm{~cm}, 4.2 \mathrm{~cm}$ and 3.8 cm .
(4 marks)
d) A pyramid frustum has a square top and bottom with lengths of 6 cm and 10 cm respectively. The slant height of the frustum is open on both ends. Calculate its surface area.

$$
u=h i+3 i-j+4 k+1 k, v=5 i-j+6 k
$$

e) (I) If $u=v$ and where h and k are constant. Calculate the values of h and l.
(II) Fatuma walks on a bearing of 120° from 5 km then on a bearing of 200° for 7 km . Calculate:
(i) How far she is from the starting point
(ii) The bearing of the stating position form her final position

$$
x_{1}(2 x-50)^{0}(x+40)^{0}, 2 x,(2 x-10)
$$

f) A pentagon has the following interior angles x .
. Calculate the value of (2 marks)

Question Two

a) For the following trigonometric equations, state the wavelength amplitude and phase angle:

$$
y=-\sin \left(3 x+60^{\circ}\right)
$$

(i)
(2 marks)

$$
y=\sin \left(1 / 2^{x+10^{\circ}}\right)
$$

(ii)

$$
y=3 \cos \left(x+40^{\circ}\right)
$$

(iii)
$\theta \quad 0 \leq \theta \leq 360^{\circ} \quad 2 \sin ^{2} \theta+\sin 2 \theta-1=0$
b) Solve for such that and
c) A stool is made by shaping a slump into a conical frustum of vertical height 60 cm . If the top radius is $\pi=3.142$
12 cm and the bottom one is 24 cm , calculate the surface area of the stool, take

(9 marks)

Question Three

a) Construct ABC in which $\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}$ and $\mathrm{AC}=7.5 \mathrm{~cm}$. Construct an escribed circle opposite to $<\mathrm{BAC}$. Measure the radius of the circle.
(7 marks)
b) Two town N and M are such that $\mathrm{M}\left(20^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$ and $\mathrm{N}\left(20^{\circ} \mathrm{N}, 120^{\circ} \mathrm{E}\right)$ take the earth's radius to be

$$
\pi=22 / 7
$$

6370km and
(i) Calculate in kilometers the shortest distance between M and N along the same latitude
(ii) If the time at N is 0935 h what is it at M ?
c) In the figure below, $\mathrm{PQ}=\mathrm{q}$ and $\mathrm{PR}=\mathrm{r} \mathrm{QM}$: $\mathrm{MR} 1: 2$ or M divides QR in the ratio 1:2. The point S is the midpoint of PQ. X is the intersection of PM and $\mathrm{SR} S X=h S R . P X=k P M$ where h and k are constant.

Find:
(i) QR in terms of q and r
(ii) PM in terms of q and r
(iii) SR in terms of q and r

Question Four

a) Let $A(2,8) B(3,5) C(1,3) D(0,6)$ be coordinates of the quadrateral $A B C D$. Suppose that T is the $\binom{-1}{2}$
translation with vector, R is the rotation centre $(0,0), 90^{\circ}$ anticlockwise and L is the reflection on the line $\mathrm{y}=\mathrm{x}$. What is the image of ABCD after translation T followed by rotation R and the reflection L?
(9 marks)
b) In the figure below, $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N are points on the circumference of a circle with centre O . The points $\mathrm{K}, \mathrm{O}, \mathrm{M}$ and P are on a straight line, PN is a tangent to the circle at $\mathrm{N},<\mathrm{KOL}=130^{\circ}$ and $<\mathrm{MKN}=40^{\circ}$.

> P

Find the values of the following angles, stating the reasons in each case:
(i) $<$ MLN
(ii) <MNP
(iii) $<$ OLN
(iv) $<$ MPN

$$
A B=\binom{2}{3} \quad\binom{-2}{4}
$$

c) Given that vectors and $\mathrm{BC}=$ work out:
(i) $\mathrm{AB}+\mathrm{BC}$
(ii) $1 / 2 \mathrm{BC}$
(iii) $\mathrm{AB}-2 \mathrm{BC}$

Question Five
a) Convert the following angles into radians:
(i) 10°
(ii) 180°
(iii) 270°
b) Derive the following identities:

$$
\sin ^{2} x+\cos ^{2} x=1
$$

(i)

$$
\cot ^{2} \theta-1=\operatorname{cosec}^{2} \theta
$$

(ii)
c) Calculate the values of x and y in the figure below given QK is parallel to ST.
d) Find the number of sides of:
(i) A polygon having sum of inferior angles 1080°
(ii) A regular polygon if each exterior angle is 24°

