TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR DEGREE OF:
 BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGY (BTRE 14S) BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS (BTAP 14S)

APS 4107: GEOMETRICAL OPTICS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

a) (i) Define the term optical path length as used in Geometrical optics.
(3 marks)
(ii) State Format's principle
(1 mark)
(iii) Derive Snell’s Law of refraction at the plane plate interface between TWO materials of refractive index n and n ' (Hint: Use a diagram for illustration)
(6 marks)
b) (i) Use the concept of optical path to briefly describe why a mirage occurs
(5 marks)
(ii) Early in the morning, on a sunny day, the heat of the sun produces a thin layer of warm air above the surface of along straight road. Consider a possible light ray path such as that illustrated below.

The ray path connects an eye-level point on the tree with an observer of height $h=2 \mathrm{~m}$. If the layer of hot air has refractive index $\mathrm{n}=1.00020$, while the cold air has refractive index $\mathrm{n} 1=1.0030$.
(i) Show that the optical path length from the tree to the eye level is approximately:

$$
n_{2} x+n_{1} \sqrt{\left(d-x^{2}\right)+4 n^{2}}
$$

(4 marks)
(ii) By using Fermat's principle, determine the actual distance that the ray travels in the layer of hot air when $\mathrm{d}=500 \mathrm{~m}$
c) A concave spherical mirror of small a perture has a radius of curvature of 30 cm . Where must an object be placed relative to mirror, in order to produce an image that is 3 times the size of the object? Solve the problem and draw the ray diagram.
(5 marks)

Question Two

a) A piece of chocolate candy is placed 10 cm from a converging tens of focal length 15 cm . If the chocolate is 4.3 cm high. Describe fully the image formed. use a diagram to help you with the problem
(10 marks)
b) Where must an object 20 cm high be placed if a diverging lens of focal length 22 cm is to form a virtual image 18 cm from the tens on the same side as the object:
(i) Find the object distance and
(ii) Draw a diagram to illustrate this arrangement.
(10 marks)

Question Three

a) Write down the lens maker's formula relating the focal length of alens to the objet and image distances. Explain the sign convention used for the distances involved.
(6 marks)
b) Show that as two lenses are brought into constant, the focal length of the combined system, f, can be expressed as:

$$
1 / f=1 / f_{1}+1 / f_{2}
$$

where f_{1} and f_{2} are the focal lengths of the two separate lenses. (Hint: Illustrate using a diagram)
(9 marks)
c) A spherical concave shaving mirror has a radius of curvature of 12 cm . What is the magnification when the face is 4 cm from the vertex of the mirror? Include a ray diagram of the image formation.
(5 marks)

Question Four

Derive expressions for the refraction matrix and translation matrix for a single lens (Hints Use a diagram for illustration and derivation)
(20 marks)

Question Five

a) Obtain the matrix equations for a pair of surface of radii r1 and r2 and refractive index n separated by distance d and placed in air. (Hint: Use diagram for illustration)
(15 marks)
b) Using the results in part (a) show that for a thin lens.
(5 marks)

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}
$$

