

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

CERTIFICATE IN INFORMATION TECHNOLOGY (CIT)

AMA 1113: FUNDAMENTALS OF MATHS

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2014 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consist of **FIVE** questions in **TWO** sections **A** & **B** Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One

a) Evaluate:-

(i)
$$9_{p_4}$$
 (4 marks)
 6_{c_2} (1)

- (iii) In how many ways can a committee consisting of 10 people be selected if there are 15 capable candidates? (4 marks)
- **b)** The information concerning the enrolment of students in different courses at a college was gathered as shown below.

		COURSE	NUMBER OF STUDENTS	
		Management	120	
		Banking	240	
		Languages	200	
		Accountancy	440	
	Represent the informa	tion using a pie chart		(6 marks)
C)	Solve the following ed	guations:-		
-,	$2x^2 + 3x - 2 =$:0		
	(i)	-		(3 marks)
	(ii) Solve for x in	the equation below:		(3 marks)
	$x + y^2 = 5$			
	x + y = 3			
	9			(3 marks)
				· · ·
d)				
	p = 1 + kt			
	(i) Maltalt th	aubiast of the formu	1.	
	(i) Make K ule	r = 100 t = 273	lld	(1 marks)
		p = 100, t = 275		(4 IIIai KS)
		[-5 10 8]	[4 6 7]	
	Λ -		$\mathbf{P} = \begin{bmatrix} 2 & 4 & 6 \end{bmatrix}$	
	A -		$B = \begin{bmatrix} -2 & 4 & 0 \\ -2 & 0 & -2 \end{bmatrix}$	
		$\begin{bmatrix} -3 & 6 & 5 \end{bmatrix}$	[5 8 7]	
e)	Given that matrix	and	l matrix	
	Find (i) $A + B$			(4 marks)
	(ii) $5(A + B)$			(2 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Certificate students taking a course in software development were asked to develop a program to do a certain task. The time taken (in minutes) to completely develop the program for fifty students was noted.

45	31	46	25	57	39	42	55	20	37
40	59	1	38	34	22	62	33	48	43
57	37	43	51	29	41	35	66	45	32
44	47	42	46	54	65	17	35	53	27
38	22	33	39	45	32	43	41	57	45

(i)	Using classes $10 - 19$, $20 - 29$, etc construct a frequency distribution table	(8 marks)
(ii)	Use the frequency distribution to calculate the mean	(4 marks)
(iii)	Calculate the variance.	(6 marks)
(iv)	State the modal class and determine the upper class boundary	(2 marks)

Question Three

- **a)** Use the binomial expansion to calculate the value of $(0.97)^{\frac{1}{2}}$ (6 marks)
- **b)** Calculate the value of (1.002)⁵ correct to **FOUR** places of decimal using binomial theorem.

(6 marks)

	(2x	$(x - y)^{15}$	·	
C)	If	is expanded in ascending powers of y. Find the coefficient of x^4	(8 mai	rks)

Question Four

$$A = \begin{bmatrix} 3 & -1 & 4 \\ 5 & 1 & -3 \\ 1 & -1 & 1 \end{bmatrix}$$

a) Given that matrix find the inverse of A i.e. A⁻¹
b) Use the result in (i) above to determine the following operation A. A⁻¹
(14 marks)
(6 marks)

Question Five

a) Write the decimal equivalent of the following numbers. $(7163.542)_8$

(3 marks)

	$(EF9.D06)_{16}$		
(ii)		(4 marks)	
	$(10001101.1101)_2$		
(iii)		(3 marks)	
b) Convert the following numbers to the indicated number bases. $(467.786)_{10}$			
(i)	to octal	(3 marks)	
	(1111001001 1) ₂		
(ii)	to hexadecimal	(4 marks)	
	(3616.76) ₈		
(iii)	to binary	(3 marks)	
	(ii) (iii) Conver (i) (ii) (iii)	$(EF9.D06)_{16}$ (ii) (10001101.1101)_2 (iii) Convert the following numbers to the indicated number bases. (467.786)_{10} (i) to octal (1111001001 1)_2 (ii) to hexadecimal (3616.76)_8 (iii) to binary	