

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 CERTIFICATE IN INFORMATION TECHNOLOGY (CIT)

AMA 1113: FUNDAMENTALS OF MATHS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Evaluate:-
$9_{p_{4}}$
(i)
(4 marks)
(ii)
(iii) In how many ways can a committee consisting of 10 people be selected if there are 15 capable candidates?
b) The information concerning the enrolment of students in different courses at a college was gathered as shown below.

COURSE	NUMBER OF STUDENTS
Management	120
Banking	240
Languages	200
Accountancy	440

Represent the information using a pie chart.
c) Solve the following equations:-

$$
2 x^{2}+3 x-2=0
$$

(i)
(ii) Solve for x in the equation below:
(3 marks)

$$
\begin{aligned}
& x+y^{2}=5 \\
& x+y=3
\end{aligned}
$$

d) The formula below is used in a certain field of technology:-

$$
p=1+k t
$$

(i) Make k the subject of the formula
(ii) Find k when $\mathrm{p}=100, \mathrm{t}=273$
(4 marks)

$$
A=\left[\begin{array}{ccc}
-5 & 10 & 8 \\
4 & -7 & -6 \\
-3 & 6 & 5
\end{array}\right] \quad B=\left[\begin{array}{ccc}
4 & 6 & 7 \\
-2 & 4 & 6 \\
5 & 8 & 7
\end{array}\right]
$$

e) Given that matrix and matrix
Find (i) A + B
(ii) $5(\mathrm{~A}+\mathrm{B})$

SECTION B (Answer any TWO questions from this section)

Question Two

a) Certificate students taking a course in software development were asked to develop a program to do a certain task. The time taken (in minutes) to completely develop the program for fifty students was noted.

45	31	46	25	57	39	42	55	20	37
40	59	1	38	34	22	62	33	48	43
57	37	43	51	29	41	35	66	45	32
44	47	42	46	54	65	17	35	53	27
38	22	33	39	45	32	43	41	57	45

(i) Using classes $10-19,20-29$, etc construct a frequency distribution table (8 marks)
(ii) Use the frequency distribution to calculate the mean
(iii) Calculate the variance.
(iv) State the modal class and determine the upper class boundary

Question Three

a) Use the binomial expansion to calculate the value of $(0.97)^{1 / 2}$
b) Calculate the value of $(1.002)^{5}$ correct to FOUR places of decimal using binomial theorem.
(6 marks)
$(2 x-y)^{15}$
c) If is expanded in ascending powers of y. Find the coefficient of x^{4}

Question Four

$$
A=\left[\begin{array}{ccc}
3 & -1 & 4 \\
5 & 1 & -3 \\
1 & -1 & 1
\end{array}\right]
$$

a) Given that matrix find the inverse of A i.e. A^{-1}
b) Use the result in (i) above to determine the following operation $\mathrm{A} . \mathrm{A}^{-1}$

Question Five
a) Write the decimal equivalent of the following numbers.

$$
(7163.542)_{8}
$$

(i)

(EF9.D06) ${ }_{16}$
(ii)
(iii)
b) Convert the following numbers to the indicated number bases.

(i)	$(467.786)_{10}$	
(ii) octal	$(11110010011)_{2}$	(3 marks)
(iii)	$(3616.76)_{8}$ to hexadecimal	(4 marks)
(to binary	$\mathbf{(3}$ marks)	

