

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

 SciencesDEPARTMENT OF MATHEMATICS \& PHYSICS
CERTIFICATE IN INFORMATION TECHNOLOGY (CIT) UKUNDA CAMPUS

AMA 1113: FUNDAMENTALS OF MATHS
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Solve the following equations:

$$
4 x^{2}-6 x-10=0
$$

(i)
(4 marks)
$8 x+15 y=150$
$12 x-6 y=160$
(ii)
$(1.002)^{5}$
b) Calculate the value of correct to four places of decimal using the binomial theorem.
(7 marks)
c) Given that matrix and matrix
$M=P^{T} \times A P$
Find matrix m where
(7 marks)
d) Evaluate the following:

$$
P=\left(\begin{array}{cc}
3 & 4 \\
-4 & 3
\end{array}\right) \quad A=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)
$$

$$
M=P^{T} \times A P
$$

${ }^{10} C_{4}$
(i)
${ }^{9} P_{3}$
(ii)

$$
7_{C_{3}} x^{6} P_{2}
$$

(iii)
(2 marks)
(2 marks)
(4 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) Express the following numbers to denary:

(i)	254.452_{8}	(4 marks)
(ii)	2163_{8}	($\mathbf{3}$ marks)
(iii)	1101.011_{2}	(3 marks)

b) Convert the following numbers into the indicated bases:
$(110111)_{2}$
(i) to decimal
$(2 C)_{16}$
(ii) to octal
$(726)_{10}$
(iii) to octal
(10 marks)

Question Three

$$
\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & -1 \\
1 & 1 & 2
\end{array}\right) \underset{\text { and B is the matrix }}{\left(\begin{array}{ccc}
1 & -2 & -1 \\
-3 & 2 & 1 \\
1 & 0 & -1
\end{array}\right)}
$$

Given that A is the matrix
a) Find the product AB
(4 marks)
b) Evaluate the following with respect to matrix A
(i) $\quad \operatorname{Det} A$
(3 marks)
(ii) Co-factor matrix C
(8 marks)
(iii) The inverse of A i.e. A^{-1}

Question Four

The numbers of days the workers of a certain factory are absent in a year are as follows:

45	40	57	44	38	39	42	55	20	45
31	59	37	47	32	22	62	66	57	43
40	11	43	42	33	41	35	33	53	27
25	38	51	46	39	65	17	41	48	32
26	34	32	45	54	65	32	65	63	47

(i) Prepare a frequency distribution table for grouped data, use classes i.e. (10-19, 20 - 29 etc)
(ii) Calculate the mean
(8 marks)
(iii) Calculate the standard deviation

Question Five

a) A shelf contains six white covered books and four black covered books. If two books are removed from the shelf. Find the probability that:
(i) Both are white
(ii) One is white and one is black
b) A research team has 8 programmers, 6 analyst and 4 operators. If FOUR member of the team are selected at random, calculate the probability that:
(i) At most one programmer is among the four
(ii) At least two operators are among the four
(iii) All the four are analysts

