

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 12J)

EBC 2308: FOUNDATION ENGINEERING

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator
- Mathematical Table

This paper consists of **FIVE** questions. Answer any **THREE** questions of the **FIVE** questions All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One**

- a) Define the following:
 - (i) Ultimate bearing capacity
 - (ii) Allowable bearing capacity
- b) Explain the THREE considerations that a foundation is expected to satisfy. (6 marks)
- c) A footing 2.5m square is located at a depth of 1.5m in dense sand of shear strength parameters $\theta' = 40^{\circ}$

c' = 25KN/m². Determine ultimate bearing capacity using figure 1 provided for the following cases.

Ground water level at foundation level (i)

(ii) Ground water level at the surface

$$\delta$$
 δ
(Take $_{\rm b} = 17 \text{KN/m}^3$, $_{\rm sat} = 20 \text{KN/m}^3$) (10 marks)

Question Two

a) Briefly describe the general mode of shear failure that can occur in a soil below a foundation.

(6 marks)

- **b)** Explain the terms in Terzaghi's general expression used to determine ultimate bearing capacity. (3 marks)
- c) A strip footing is designed to carry a safe load of 750KN per meter run at a depth of 0.55m in silty sand. Ground water level is at foundation level considering factor of safety 3 determine using figure 1 the width of the footing. (11 marks)

 $\phi' = 40^{\circ}$, c' = 0 $\delta_b = 18KN / m^3$ δ_{and} and $s_{at} = 21KN/m^3$. Take: (11 marks)

Question Three

- a) Outline the procedure for standard penetration test.
- **b)** Explain the adjustment needed if a standard penetration test is done below water table.
- (2 marks) (4 marks) c) Explain the effect of ground water on foundation settlement.
- **d)** A circular footing 2.0m diameter is to be located at a depth of 1.5m in a sand deposit of =18KN/m³ standard penetration resistance number obtained from standard penetration test conducted was found to be 25. Use figure 2 provided to estimate allowable bearing capacity. (6 marks)

Question Four

a) S	ate FIVE assumptions made ir	Terzaghi's theory of consolidation	(5 marks)
------	------------------------------	------------------------------------	-----------

b) Explain the following terms as applied in the theory of consolidation:

(8 marks)

(4 marks)

(i) Coefficient of volume compressibility

- (ii) Drainage bath
- (iii) Pre consolidation pressure
- c) A fully saturated clay soil 30mm thick was consolidated under a pressure increment of 200KN/m². The sample thickness was 26mm at end of the test and 28mm on expansion. Moisture content was then tested and found to be 21.5%. If particle specific gravity for the soil was 2.68, find the void ratio at the following stages:
 - (i) At the beginning of the test
 - (ii) At the end of the test

Question Five

- a) Distinguish between a normally consolidated and over consolidated soil. (2 marks)
- b) Briefly explain the term "primary consolidation" and its significance. (3 marks)
- **c)** A saturated sample of clay soil of particle specific gravity 2.68 was tested in an oedometer. The moisture content for the sample was found to be 23%. Test results obtained were:

Incrementa	Pressure	Sample
l Stage	(KN/m^2)	thickness (mm)
1	50	26.0
2	100	25.6
2	200	25.2
3	400	24.9
4	800	24.7
5	0	25.2

- (i) Determine void ratio at beginning and at the end of test
- (ii) Draw a graph of thickness against pressure
- (iii) Use the graph obtained to find coefficient of volume compressibility at pressure $P = 400 \text{KN/m}^2$

(15 marks)

(8 marks)

(7 marks)