

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF MATHEMATICS \& COMPUTER SCIENCE

AMA 4324: FLUID MECHANICS I

END OF SEMESTER EXAMINATION

SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Explain the following terms:
(i) Specific weight
(ii) Specific volume
(iii) Specific gravity marks)
b) A researcher of carbon tetrachloride (CCL4) has a mass of 500 kg and a volume of $0.315 \mathrm{~m}^{3}$. Calculate the following properties of carbon tetrachloride
(i) Weight
(ii) Density
(iii) Specific weight
(iv)Specific gravity
c) An open tank contains 5.7 m of water covered with 2.8 m of Kerosene $1 \mathrm{w}=8 \mathrm{KN} / \mathrm{m}^{3}$. Find the pressure at the interface and at the bottom of the tank
d) Define a Newtonian fluid
e) A plate of 0.025 m distance from a fixed plate, moves at $60 \mathrm{~cm} / \mathrm{s}$ and requires a force of $2 \mathrm{~N} / \mathrm{m}^{2}$ to maintain this speed. Calculate the fluid viscosity between the plates
(4 marks)
f) A head of water over an orifice of diameter 100 mm is 10 m . The water coming out from orifice is collected in a circular tank of diameter 1.5. The rise of water level in this tank is 1.0 m in 25 seconds. Also the coordinates of a point on the jet measured from vena contracts are 4.3 m horizontal and 0.5 vertical. Find the following coefficient Cd, Cv and Cc
(10 marks)

Question Two

a) Define the following types of flows:
(i) Steady flow
(ii) Uniform flow
(iii) Rotational flow
(iv)Laminar flow
(5 marks)
b) A 30 m diameter pipe, conveying water branches into two pipes of diameter 20 cm and 1 cm respectively. if the average velocity in the 30 cm diameter pipe $2.5 \mathrm{~m} / \mathrm{s}$. Find the discharge in this pipe and also calculate the velocity in the 15 cm pipe if the average velocity in 20 m diameter pipe is $2 \mathrm{~m} / \mathrm{s}$
(3 marks)
c) The velocity vector in a fluid flow is given:

$$
V=4 x^{3} j-10 x^{2} y j+2 t k
$$

Find the velocity and acceleration of a fluid particle at $(2,1,3)$ at time $t=1$
(8 marks)

Question Three

a) Explain the following types of heads of flowing liquid:
(i) Potential head
(ii) Velocity head
(iii) Pressure head
(iv)Total head
b) Derive the Bernoulli's equation
c) State the assumptions made in deriving of Bernoulli's equation
d) The water is flowing through a tapering pipe having diameters 300 mm and 150 mm at sections 1 and 2 respectively. The discharge through the pipe is 40 titles $/ \mathrm{sec}$. The section 1 is 10 m above datum and section 2 is 6 m above datum. Find the intensity of pressure at section 2 if that at section 1 is $400 \mathrm{KNm}^{2}$

Question Four

a) Define and explain the following:
(i) Velocity potential
(ii) Stream function
(4 marks)
(ϕ)
b) The velocity potential function is given by an expression:

$$
\phi=-\frac{x y^{3}}{3}-x^{2}+\frac{x^{3} y}{3}+y^{2}
$$

(i) Find the velocity components in x and y direction

ϕ

(ii) Show that represents a possible case of flow

(10 marks)

$$
y=x^{2}+y^{2}
$$

c) Sketch the stream lines represented by . Also find out the velocity and its direction at point $(1,2)$
(6 marks)

Question Five

a) An Isosceles triangle of base 3 metres and altitude 6 metres is immersed vertically in water, with its axis of symmetry horizontal as shown in figure 1 below. If the head of water on it is 9 metres, calculate:
(i) Total pressure on the plate
(ii) The position of the centre of pressure

(5 marks)

b) A body of dimensions $1.5 \mathrm{~m} \times 1.0 \mathrm{~m} \times 2 \mathrm{~m}$ weighs 196.2 N in water. Find its weight in air. What will be its specific gravity.
(4 marks)
c) Describe the following gas:
(i) Idea gas
(ii) Perfect gas
(2 marks)
d) State Boyle's Law and Charles Law
(2 marks)
e) A steel flask of $0.04 \mathrm{~m}^{3}$ capacity is to be used to store nitrogen at $120 \mathrm{bar} 20^{\circ} \mathrm{C}$. The flask is to be protected against excessive pressure by a fusible plug which will melt and allow the gas to escape if the temperature raises to high
(i) How many kg of nitrogen will the flask hold at the designed conditions.
(ii) At what temperature must the fusible plug melt in order to limit the pressure of a full flask to a maximum of 150 bar $\left(\mathrm{R}_{\mathrm{o}}=8.3143 \mathrm{KJ} / \mathrm{kgmolK}\right)$
(7 marks)
The water surface

Fig 1

