

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 13S)

EBC 2105: ENGINEERING SURVEYING II

END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet

This paper consists of FIVE questions. Answer any THREE questions of the FIVE questions

All questions carry equal marks
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One

a) (I) Define the term tacheometry.
(II) Differentiate between the following pair of terms:
(i) Changing faces and swinging
(ii) Line of collimation and vertical axis
(iii) Magnetic meridian and true meridian
b) The data shown in table 1 was observed during a tacheometric survey of three stations MNP. Given the reduced level of station N was 100 and that the staff was held vertically; and the instrument constants as 100 and zero, calculate:
(i) Distance MP; MN and NP
(ii) Area MNP in hectares
(iii) Differences in height MN and MP
(iv) Reduced level of points M and P

Table 1

Inst At	To	Vertical	Staff Readings	HI	Horizontal Circle Readings
M	N	Angles			2.49
	P	$-3^{\circ} 40^{\prime}$	$1.700,2.400,3.00$	1.49	$00^{\circ} 00^{\prime} 00^{\prime}$
		$1.85,2.37,2.89$		$70^{\circ} 50,00$	

Question Two

$\phi_{1} \quad \phi_{2}$
a) (i) Show that when two angles of elevation and are observed to a vertically held staff, that the horizontal distance (H) is given by:

$$
H=\frac{S}{\tan \phi_{1}-\tan \phi_{2}}
$$

(ii) Derive an expression of the difference in height for the situation in Q2 a(i) above. (8 marks)
b) In order to determine the area of a triangular plot of land observations where taken on to points B and C from instrument station A and recorded as shown in table 2. Given the reduced level of the instrument station as 58.97 m AMSL, calculate:
(i) Distances AB, AC and AC
(ii) Area ABC in hectares
(iii) The reduced levels of points B and C
(iv) The gradient of line BC

Table 2

Inst At	To	Vertical Angles	Staff Readings	HI	Whole circle bearings
A	B	$2^{\circ} 52^{\prime}$	2.112	1.45	$15^{\circ} 30^{\prime}$
		$4^{\circ} 10^{\prime}$	3.504		
	C	$-1^{\circ} 47$,	1.783		$82^{\circ} 10^{\prime}$
	$-2^{\circ} 55$	2.995			

Question Three

a) Differentiate between the following pair of terms:
(i) Closed traverse and open traverse
(ii) Traverse leg and traverse station
(iii) Link traverse and polygonal traverse
b) Figure 1 shows the clockwise angles of a traverse ABCDEFG. Given the whole circle bearing of line AB and FG as $33^{\circ} 41^{\prime} 24^{\prime \prime}$, calculate the whole circle bearings of lines $\mathrm{BC}, \mathrm{CD}, \mathrm{DE}$ and FC .

Figure 1

(14 marks)

Question Four

Describe the following permanent adjustments of a theodolite:
a) Bubble error adjustment
b) Diaphragm error adjustment
c) Trunnion axis error adjustment
(20 marks)

Question Five

a) State any ONE merit and TWO demerits of the tangential system as compared to the stadia systems of tacheometry.
b) Table 3 refers to a stadia tacheometric exercise with the staff held normally. The instrument constants were 100 and zero. Given the height of the instrument as 1.46 m and the reduced level of point Q as 200.00m AMSL, calculate:
(i) Distances PQ, PR and QR
(ii) Area PQR
(iii) Differences in height PQ, PR and PR
(iv) The gradient of line PR

Table 3

