

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE - Y2 S2)

ECE 2211: ENGINEERING SURVEY II

END OF SEMESTER EXAMINATION

SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) and any other TWO questions
All questions carry equal marks
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
Question One (COMPULSORY)
a) Given the following whole circle bearing (WCB) of three sides of a triangle as:

Side	WCB
AB	$93^{\circ} 24^{\prime} 22^{\prime \prime}$
BC	$31^{\circ} 12^{\prime} 16^{\prime \prime}$
CA	$239^{\circ} 58^{\prime} 35^{\prime \prime}$

Determine the internal angles of the triangle.
b) The following co-ordinates of M and N were provided as follows:

Coordinates \quad Northings (m) Eastings (m)

Using BOWDITCH method, complete the table below:

| Std | Bearing | $\begin{array}{l}\text { Distanc } \\ \mathrm{e}\end{array}$ | | Calculated | | $\begin{array}{l}\text { Adjustme } \\ \text { nt }\end{array}$ | | Adjusted | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Final

Coordinates\end{array}\right]\)
c) The following angles were adjusted for triangle ABC which were provided as:

$$
\begin{aligned}
\phi_{A} & =75^{\circ} 04^{\prime} 25^{\prime \prime} \\
\phi_{B} & =42^{\circ} \quad 35^{\prime} 47^{\prime \prime} \\
\phi_{C} & =62^{\circ} 19^{\prime} 48^{\prime \prime}
\end{aligned}
$$

The datum co-ordinates of A and B were

$$
N(m) \quad E(m)
$$

$$
\text { A: }+643649.19 \quad+409577.46
$$

$$
\text { B: +641 } 668.40 \quad+412600.36
$$

Using the first principle, derive the coordinates of C from points A and B.
d) Discuss any TWO methods employed during a traverse adjustment

Question Two

a) Explain the TWO basic methods used in angle adjustments in a triangular scheme.
(4 marks)
b) The field abstractions of figure 1 below shows the observed angles of a braced quadrilateral PQRS. Using the equal shift method, calculate the adjusted values of the angles.

Angle	Observed value
1	$31^{\circ} 20^{\prime} 50^{\prime \prime}$
2	$53^{\circ} 10^{\prime} 45^{\prime \prime}$
3	$56^{\circ} 44^{\prime} 38^{\prime \prime}$
4	$38^{\circ} 43^{\prime} 39^{\prime \prime}$
5	$41^{\circ} 53^{\prime} 49^{\prime \prime}$
6	${42^{\circ}}^{3} 7^{\prime} 47^{\prime \prime}$
7	$54^{\circ} 54^{\prime} 56^{\prime \prime}$
8	$40^{\circ} 33^{\prime} 30^{\prime \prime}$

Observed value
$31^{\circ} 20^{\prime} 50$ "
$53^{\circ} 10^{\prime} 45^{\prime \prime}$
$56^{\circ} 44^{\prime} 38^{\prime \prime}$
$38^{\circ} 43^{\prime} 39^{\prime \prime}$
$41^{\circ} 53^{\prime} 49 "$
$42^{\circ} 37^{\prime} 47{ }^{\prime \prime}$
$54^{\circ} 54^{\prime} 56^{\prime \prime}$
$40^{\circ} 33^{\prime} 30^{\prime \prime}$
(16 marks)

Question Three

a) Define tacheometry.
(3 marks)
b) Using a sketch, derive expression for the horizontal distance, H , given and as angles of depression and differences in level L between points A and B.
c) A tacheometer has a multiplying constant of 100 and an additional constant 1 . When set up for use, the trunion axis had a reduced set up for use, the trunion axis had a reduced level of 15.2 m and when sighted a vertically held leveling staff, the horizontal centre line read 1.8 m and the lower and upper stadia lines 1.4 m and 2.3 m respectively. If the angle of elevation of the instrument was 9°, calculate:
(i) Horizontal distance (H) of the staff from the instrument.
(3 marks)
(ii) The reduced level of the ground at the staff position.
d) Using a sketch, differentiate between face left observation (FL) and face right observation (FR) in a theodilite reading.

Question Four

The field abstract for a triangulation scheme to establish a small construction site had the following observations.

Angle	Observed value 1
$26^{\circ} 10^{\prime} 48^{\prime \prime}$	
2	$27^{\circ} 37^{\prime} 16^{\prime \prime}$
3	$35^{\circ} 46^{\prime} 0^{\prime \prime}$
4	$32^{\circ} 57^{\prime} 52^{\prime \prime}$
5	$28^{\circ} 23^{\prime} 12^{\prime \prime}$
6	$29^{\circ} 04^{\prime} 37^{\prime \prime}$
7	$126^{\circ} 15^{\prime} 59^{\prime \prime}$
8	$111^{\circ} 32^{\prime} 32^{\prime \prime}$
9	$122^{\circ} 32^{\prime} 02^{\prime \prime}$

Abstract

for centre point triangle Given the following stations F and B below adjust the angles: $$
\begin{array}{ll} \mathrm{N}(\mathrm{~m}) & \mathrm{E}(\mathrm{~m}) \\ \mathrm{F}+250.00 & +719.37 \\ \mathrm{~A}+447.15 & +250.00 \end{array}
$$

\section*{(20 marks)}

Question Five

a) The coordinates of S.A and L were provided as NS $=1200.55 \mathrm{~m}, \mathrm{E} 3=1310.22 \mathrm{~m}, \mathrm{NA}=960 \mathrm{~m}, \mathrm{EA}=$ $1530.45 \mathrm{~m}, \mathrm{NL}=580.82 \mathrm{~m}$, $\mathrm{EL}=1240.22 \mathrm{~m}$ respectively. Determine the coordinates of B by $(\alpha) \quad(\sigma)$ intersection method given the angles of S, A and L as BSA $=85^{\circ} 40^{\prime} 55^{\prime \prime}$; SAB $=55^{\circ} 45^{\prime} 54$ " (σ) (β)
BAL $=41^{\circ} 42^{\prime} 50^{\prime \prime}$ and ALB $=70^{\circ} 10^{\prime} 03^{\prime \prime}$
b) An open traverse was run from A to E as shown below, determine its partial coordinates.
(14 marks)

