

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY
ELECTRICAL POWER ENGINEERING
MECHATRONICS
TELECOMMUNICATION & INFORMATION ENG.

ENGINEERING MATHEMATICS VI

SEMESTER VI FINAL EXAMINATIONS

SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Question paper
- Answer booklet
- *A Non-programmable calculator*
- SMP Table
- *Abridged Laplace Transforms table*

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Find an attached copy of Abridged Laplace Transform Table This paper consists of **THREE** printed pages

Question 1 (Compulsory)

$$\begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix} \qquad f(\lambda) = \det(A - \lambda I)$$

a) Given and the characteristic polynomial and the characteristic polynomial and the characteristic polynomial and $f(\lambda)=0$

equation and hence show that where 0 = Zero matrix. (7 marks)

b) Determine the eigenvalues of the following matrix.

$$A = \begin{pmatrix} -2 & 5 & 4 \\ 5 & 7 & 5 \\ 4 & 5 & -2 \end{pmatrix}$$

(5 marks)

 $t^2 e^{-2t} \cos t$ c) (i) Determine the Laplace transform of (7 marks)

$$f(t) = \begin{cases} t - 1, & 1 < t < 2 \\ 3 - t, & 2 < t < 3 \end{cases}$$

(ii) Given the function

i) Express the function in terms of unit step (Heaviside) function

ii) Determine its Laplace transform (4 marks)

$$e^{x}(\cos y + j\sin y)$$

d) (i) Show that the function is analytic function.

(ii) Determine the derivative of the function in d(i) (7 marks)

Question 2

a) Given the matrix

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

Determine

i) Eigen value of A

ii) Eigenvectors of A

$$P^{-1}AP = S$$

iii) Diagonalize the matrix A such that where S is a diagonal matrix (14 marks)

$$C = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}$$

b) Determine the eigenvectors of the matrix given

(6 marks)

Question 3

$$x^2 - y^2 + 2y$$

a) Given the function

i) Show that the given function is harmonic (3 marks)

$$Z = W^3$$

ii) Show that the function remains harmonic under the transformation

(5marks)

$$U-V = (x-y)(x^2 + 4xy + y^2)$$
 and $f(z) = u + jv$ is an analytic function of $f(z)$

$$z = x + jy$$

b) Given

in terms of *z* determine

(2 marks)

Question 4

$$\frac{1-\cos t}{t}$$

a) Determine the Laplace transform of

(6 marks)

b) Given the function

$$f(t) = \begin{cases} \sin 2t, & 2\pi < t < 4\pi \\ 0, & otherwise \end{cases}$$

Represent in terms of unit function i)

(6 marks)

$$f(t) = \begin{cases} \sin wt & \text{for } 0 < t < \frac{\pi}{w} \\ 0 & \text{for } \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$$

c) The Half wave rectifier function is given by

determine the Laplace transform of

Question 5

$$v = \frac{1}{z},$$
 $x^2 - y^2 = 1$

a) Show that under the transformation the image of the hyperbola

$$R^2 = \cos 2\phi$$

lemniscate

(6 marks)

b) The vertices of a triangle in the z- plane is given by i, 1+i and 1-i

$$w = e^{5\pi i \frac{1}{3}} \cdot z - 2 + 4i$$

- i) Determine its image under the transformation (6 marks)
- ii) On a graph paper plot the triangle on the z-plane and its image on the w-plane.

$$x^2 - y^2 = 4$$

$$w = z^2$$

c) Transform the curve

under the mapping

(3 marks)