TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN MARINE ENGINEERING (DMAE 6)

AMA 2311: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

Question One (Compulsory)

$$
\underset{\sim}{A}=2 i+3 j+4 k, \underset{\sim}{B}=4 i-3 j+2 k
$$

$\underset{\sim}{A} \quad \underset{\sim}{B}$
a) (i) Given \quad determine the direction cosines of and hence the
angle between them. 6 marks)

$$
\underset{\sim}{A}=2 i+4 j+3 k, \underset{\sim}{B}=i+5 j-2 k \quad \underset{\sim}{A} \times \underset{\sim}{B}
$$

(ii) Given determine
(4 marks)

$$
f(x)=\frac{1}{1-x}
$$

b) Use Maclaurin's theorem to obtain the power series for up to the term in x^{4}

$$
3 \sin x+4 x-5=0
$$

c) Use the Newton-Raphson iterative method to determine the root of the equation taking the first approximation of $\mathrm{x}=0.75$ correct to 4 decimal places
d) Determine the Newton-Gregory difference interpolating polynomial for data in table 1. Hence determine $f(2.5)$
Table 1

X	0	1	2	3	4
$F(x)$	3	6	11	18	27

(7 marks)
e) (i) Use Maclaurin's series to obtain the first three terms of the power series for

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+5 y=6 \sin t
$$ se Maclaurin's theorem to obtain the power series for

$$
f(x)=x^{4}+2
$$

(ii) Use Taylor's series to express the function as a power series of $x+1$
(8 marks)
f) Determine the Newton-Gregory forward difference interpolating polynomial for the data below. Hence evaluate $f(25)$
(6 marks)

x	0	1	2	3	4
$f(x)$	1	7	23	55	109

Question Two

$$
f(x)=\ln x
$$

a) Use Taylor's theorem to express as a power series of $x-1$
(8 marks)

$$
f(x)=\frac{\cos x}{1+x}
$$

b) Obtain using Maclaurin's series the power series up to the term x^{3}
(12 marks)

Question Three

$$
e^{2 x}-25 x+10=0
$$

a) Use the Newton-Raphson iterative method to determine the root of the equation taking the first root to be $\mathrm{x}=1.65$ correct to 4 decimal places.
b) Table 2 is data that defines a function:

x	0	1	2	3	4
$f(x)$	1	5	31	12 1	341

(i) Use the Newton-Gregory forward difference formula to evaluate $f(0.75)$
(ii) Use the Newton-Gregory backward difference formula to determine f(3.4)
(12 marks)

Question Four

$$
\underset{\sim}{F}=3 u i+u^{2} j+(u+2) k \quad \underset{\sim}{V}=2 u i-3 u j+(u-2) k
$$

a) Given
and
determine:

$$
\int_{0}^{2}(\underset{\sim}{F} \times \underset{\sim}{V}) d u
$$

$$
\phi=x^{2} y z^{3}+x y^{2} z^{2} \quad \phi
$$

b) (i) Given determine grad at point $(1,3,2)$

$$
\underset{\sim}{V}=x y^{2} i+2 x y^{2} j-3 y z^{2} k
$$

(ii) Given determine curl V at point $(1,-1,1)$
(8 marks)

Question Five

Solve following second order differential equations:

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+5 y=6 \sin t \\
& \text { a) } \\
& \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=x^{2} \quad \text { given that when } \mathrm{x}=0, \mathrm{y}=1 \text { and } \\
& \text { b) } \quad \frac{d y}{d t}=1 / 2
\end{aligned}
$$

(9 marks)
(11 marks)

