# TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health 

## Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS<br>DIPLOMA IN ELECTRICAL POWER ENGINEERING (DEPE) DIPLOMA IN INSTRUMENTATION \& CONTROL ENGINEERING (DICE)

AMA 2351: ENGINEERIGN MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: DECEMEBER 2014
TIME ALLOWED: 2 HOURS

[^0]Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

## Question One (Compulsory)

a) Given the following matrices:

$$
A=\left(\begin{array}{ccc}
3 & 4 & 0 \\
-2 & 6 & -3 \\
7 & -4 & 1
\end{array}\right), \quad B=\left(\begin{array}{lll}
1 & 0 & 3 \\
2 & 1 & 2 \\
1 & 3 & 1
\end{array}\right) \quad C=\left(\begin{array}{c}
2 \\
5 \\
-1
\end{array}\right)
$$

Determine the following;
(i) $\mathrm{B}^{\mathrm{T}}$
(1 mark)
(ii) BxC
(3 marks)
(iii) $\mathrm{B}+\mathrm{A}$
$|B|$
(iv)
(2 marks)

$$
\int_{0}^{1} d x \int_{0}^{x} e^{y / x} d y
$$

b) Evaluate
(4 marks)
c) (i) Show that the force field $F$ given by $F=\left(y^{2} z^{3}-6 x z^{2}\right) i+2 x y z^{3} j+\left(3 x y^{2} z^{2}-6 x^{2} z\right) k$ is conservative.
(4 marks)

$$
\oint_{C}\left(x^{2}+y^{2}\right) d x+2 x y d y
$$

(ii) Evaluate , where C is the boundary traversed counter clockwise of the

$$
R=\left\{(x, y): 0 \leq x \leq 1,2 x^{2} \leq y \leq 2 x\right\}
$$

region
(4 marks)

## Question Two

a) Matrix A is defined as:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 3 & 2 \\
0 & 0 & -2
\end{array}\right) \\
\text { determine the eigenvalues of } \mathrm{A} \\
B=\left(\begin{array}{cc}
6 & -3 \\
2 & 1
\end{array}\right)
\end{gathered}
$$

b) Diagonalize the matrix
c) Determine the rank of matrix:

$$
C=\left(\begin{array}{ccc}
-1 & 2 & 2 \\
0 & 0 & 1 \\
-1 & 2 & 0
\end{array}\right)
$$

Question Three

$$
\iint_{A} x y d x d y
$$

$$
x^{2}=4 a y
$$

a) Evaluate where A is the domain bounded by x axis ordinate $\mathrm{x}=2 \mathrm{a}$ and the curve

$$
\text { b) Determine the area between the parabola } y^{2}=4 a x \quad x^{2}=4 a y
$$

## Question Four

a) A fluid motion is given by:

$$
\vec{V}=(y \sin z-\sin x) \vec{i}+(x \sin z+2 y z) \vec{i}+\left(x y \cos z+y^{2}\right) \vec{k}
$$

(i) Show that the motion is irrotational.
(4 marks)
(ii) Determine the velocity potential

$$
x^{2}+z^{2}=4
$$

b) Determine the flux out of the portion of the cylinder in the first octant bounded by $\mathrm{x}=0, \mathrm{x}$

$$
\vec{F}=x \vec{i}+2 z \vec{j}+y \vec{k}
$$

$=3 y=0$ and $z=0$, given that the vector field

## Question Five

$$
A=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right)
$$

a) (i) Given the matrix , evaluate $\mathrm{A}^{6}$
(8 marks)

$$
B=\left(\begin{array}{cc}
\sin t & t^{2} \\
1 & e^{2 t}
\end{array}\right) \quad \frac{d B}{d t}
$$

(ii) Given determine

$$
\begin{equation*}
\int_{C}\left(x^{2} y d x+x^{2} d y\right) \tag{2marks}
\end{equation*}
$$

b) Evaluate where C is the boundary described counter clockwise of the triangle with vertices $(0,0),(1,0),(1,1)$ using Green's theorem.


[^0]:    Instructions to Candidates:
    You should have the following for this examination

    - Answer Booklet

    This paper consist of FIVE questions
    Answer question ONE (COMPULSORY) and any other TWO questions

