TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN ELECTRICAL POWER ENGINEERING DIPLOMA IN TELECOMMUNICAITON \& INFORMATION DIPLOMA IN INSTRUMENTATION \& CONTROL ENGINEERING

AMA 2351: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table/Scientific Calculator
- Drawing Instruments

This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)

$$
\Phi(x, y, z)=x^{2} y z^{2}+4 x y z
$$

a) Given the scalar field

Find:

$$
\Phi(1,0,1)
$$

(i) The unit vector normal to
(4 marks)

$$
2 \underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k}
$$

(ii) The directional deviation of in the direction of the vector at the point $(1,0,1)$
(3 marks)
Φ
(iii) The direction of maximum increase of
(4 marks)
(6 marks)

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

b) Determine the Eigen value and corresponding Eigen vectors of the matrix
c) Use triple integral to determine the volume of the solid bounded by the surface $z=0, z=x+2, y=x^{2}$ and $y=2 x+3$

$$
\int_{0}^{\pi / 4} \int_{0}^{\tan \theta \sec \theta} r^{3} \cos ^{2} \theta d r d \theta=1 / 20
$$

d) Show that
(4 marks)

Question Two

a) Determine the value of P such that the three vectors are coplanar when:

$$
A=\underset{\sim}{i}-j+3 \underset{\sim}{k} \underset{\sim}{B}=\underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{k}, C=3 \underset{\sim}{i}+p \underset{\sim}{j}+\underset{\sim}{k}
$$

(3 marks)

$$
\underset{\sim}{A}=n \underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k} \quad \underset{\sim}{B}=2 \underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k} \quad \underset{\sim}{n} \quad \underset{\sim}{A} \underset{\sim}{B} 2 \pi
$$

b) Given that and find \sim so that the angle between \sim and \sim is

$$
\underset{\sim}{A}=x^{2} y \underset{\sim}{i}+(x y+y z) j+x z^{2} \underset{\sim}{k}, \underset{\sim}{B}=2 y z \underset{\sim}{i}-4 x z j+3 x y \underset{\sim}{i}
$$

c) If

$$
\phi=3 x^{2} y+2 x y z-6 y^{2} z^{2}-4
$$

and
Determine at the point $(2,1,0)$
Φ
(i) grad
(ii) Div A
(iii) Div B
(iv) Curl B

Question Three

$$
\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]^{-1} \quad\left[\begin{array}{ccc}
-1 & b & c \\
0 & b & c
\end{array}\right]
$$

a) Given that is an Eigen vector of the matrix

Find:
a) The value of c and b
(10 marks)
b) Eigen values and corresponding Eigen vectors of A

Question Four

$$
\oint\left(x^{2}+y^{2}\right) d x+(x+2 y) d y
$$

a) Using Green's theorem, evaluate

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
-1 & 3 & b \\
0 & b & c
\end{array}\right]
$$ by:

$$
\begin{array}{lc}
y=0 & 0 \leq x \leq 2 \\
x^{2}+y^{2}=4 & 0 \leq x \leq 2 \\
x=0 & 0 \leq y \leq 2
\end{array}
$$

$$
\underset{\sim}{a}=-3 \underset{\sim}{i}+7 \underset{\sim}{j}+5 \underset{\sim}{x}, \underset{\sim}{b}=-3 \underset{\sim}{b}+7 \underset{\sim}{j}-3 \underset{\sim}{k}
$$

b) (i) Determine the volume of a parallel pied if and

$$
c=7 \underset{\sim}{i}-5 j-3 \underset{\sim}{k}
$$

(ii) Find a unit vector perpendicular to both of the vectors

$$
\begin{equation*}
\underset{\sim}{A}=2 \underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k}, B=\underset{\sim}{i}-\underset{\sim}{j}+2 \underset{\sim}{k} \tag{3marks}
\end{equation*}
$$

Question Five

$$
\int_{0}^{1} \int_{-1}^{2 x} \int_{0}^{y+1} d z d y d x
$$

a) Evaluate the triple integral
b) Use double integral to find the volume of the solid bounded by the surface $z=4-x 2-y 2$ and the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=-\mathrm{x}+1$

$$
0 \underset{\sim}{A} O \underset{\sim}{B} \quad 0 \underset{\sim}{C}
$$

c) Find the volume of a parrallopiped whose edges are and where $\mathrm{A}(1,2,3), \mathrm{B}(1,1,2) \mathrm{C}(2$, (3 marks)

