TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN MEDICAL ENGINEERING

AMA 2351: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
f(x)=\sin x
$$

a) (i) Use Maclaurins series to expand into power series in x.

$$
f(x) \quad g(x)=j \operatorname{sh} x=\sin j x
$$

(ii) Use the series of to show that
(7 marks)

$$
f x=x^{4}-5 x^{3}+x^{2}-3 x+4
$$

b) Write the polynomial
in ascending power of $x-4$
(6 marks)

$$
x_{n}=1.2345, x_{n+1}=1.2447, x_{n+2}=1.3124 x_{n+3}=1.3233
$$

c) Given that

$$
f_{(x n)}=12.5674, \quad f_{(x n+2)}=13.9831
$$

$$
f\left(x_{n+1}\right) \quad f\left(x_{n+3}\right)
$$

Use Linear interpolation and extrapolation to determine and correct to 5 d.p
(6 marks)
d) A polynomial function is defined by the following set of functions:

x	2	4	6	8	10
$\mathrm{f}(\mathrm{x})$	-7	9	97	305	681

Use Newton-Gregory formula to evaluate f(4.8)
(5 marks)
e) Evaluate the following integrals.

$$
\int_{0}^{2} \int_{0}^{1}\left(x^{2}+y^{2}\right) d y d x
$$

(i)

$$
\int_{0}^{3} \int_{0}^{\ln x} d y d x
$$

(ii)
(3 marks)
(3 marks)

Question Two

$$
f(x)=\sinh x
$$

a) Use Maclaurian theorem to derive the power series of

$$
\begin{equation*}
f(x)=\ln \left\{\frac{1+x}{1-x}\right\} \tag{5marks}
\end{equation*}
$$

b) (i) Given that . Use Maclaurin theorem to determine the power series of upto x^{7}
(ii) Use your expansion to determine the value of $\ln 3$ and $\ln 1.5$ correct to 4 s.f. Hence deduce the value of $\ln 2$
(15 marks)

Question Three

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} x^{2} y d y d x
$$

a) Evaluate the integral
b) Use triple integral to find the volume of the solid bounded by the planes $\mathrm{z}=0, \mathrm{x}=1, \mathrm{x}=2, \mathrm{y}=0, \mathrm{y}=$

$$
z=2 x^{2}+y^{2}
$$

2 and the surface
(6 marks)

$$
y=6 x-x^{2}
$$

c) Use double integral to find the area enclosed by the parabola
(8 marks)

Question Four

$$
x^{3}-6 x^{2}+6 x-8=0
$$

a) (i) Given that X_{n} is an approximation to the root of the equation , show using Newton-Raphson method that a better approximation $\mathrm{xn}+1$ is given by:

$$
x_{n+1}=\frac{2 x_{n}^{3}-6 x_{n}{ }^{2}+8}{3 x_{n}{ }^{2}-12 x_{n}+6}
$$

(ii) Hence by taking $\mathrm{x}_{0}=5$ find the root of the equation correct to $3 \mathrm{~d} . \mathrm{p}$
(9 marks)
b) A function $f(x)$ is defined b:

x	0	1	2	3	4	5	6
$\mathrm{f}(\mathrm{x})$	-1	2	11	38	95	194	347

Use Newton-Gregory forward difference formula to determine the poly nomial that fits the data hence estimate:
$f(4.8)$
(i)
$f(6.4)$
(ii)
(11 marks)

Question Five

a) State the Maclaurin series

$$
y=\sin ^{-1}\left(\frac{x}{2}\right)
$$

(i) Obtain the Maclaurian series for up to the term x 5 .

$$
s i^{-1}(2 / 3)
$$

(ii) Use the series to approximate correct to 4 d.p.

$$
\sin ^{-1}(2 / 3)=0.7297
$$

(iii) Calculate the error in the approximate value if
(12 marks)

$$
f(x)=e^{3 x} \sin 3 x
$$

, use Maclaurin series to expand $f(x)$ up to x^{3} evaluate
(8 marks)

