

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS

DIPLOMA IN MEDICAL ENGINEERING

AMA 2351: ENGINEERING MATHEMATICS VI

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet - Mathematical Table This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions

Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

	$f(x) = \sin x$	
a)	(i) Use Maclaurins series to expand into power series in x.	
	(ii) Use the series of $f(x)$ $g(x) = jshx = sin jx$	(7 marks)
b)	$fx = x^4 - 5x^3 + x^2 - 3x + 4$ in ascending power of x – 4	(6 marks)
c)	$x_n = 1.2345, x_{n+1} = 1.2447, x_{n+2} = 1.3124 x_{n+3} = 1.3233$ Given that $f_{(xn)} = 12.5674, f_{(xn+2)} = 13.9831$	
d)	Use Linear interpolation and extrapolation to determine $f(x_{n+1})$ and $f(x_{n+3})$ A polynomial function is defined by the following set of functions:	correct to 5 d.p (6 marks)
	x 2 4 6 8 10 f (x) -7 9 97 305 681	
	Use Newton-Gregory formula to evaluate f (4.8)	(5 marks)
e)	Evaluate the following integrals. $\int_{0}^{2} \int_{0}^{1} (x^{2} + y^{2}) dy dx$	
	(i) $\int_{0}^{3} \int_{0}^{\ln x} dy dx$	(3 marks)
	(ii)	(3 marks)
Qı	iestion Two	
a)	$f(x) = \sinh x$ Use Maclaurian theorem to derive the power series of $f(x) = \ln\left\{\frac{1+x}{1-x}\right\}$	(5 marks)

b) (i) Given that . Use Maclaurin theorem to determine the power series of upto x⁷
(ii) Use your expansion to determine the value of ln 3 and ln 1.5 correct to 4 s.f. Hence deduce the value of ln 2
(15 marks)

Question Three

 $\int_0^3 \int_0^{\sqrt{9-x^2}} x^2 y \, dy dx$

a) Evaluate the integral

b) Use triple integral to find the volume of the solid bounded by the planes z = 0, x = 1, x = 2, y = 0, $y = z = 2x^2 + y^2$ 2 and the surface (6 marks)

c) Use double integral to find the area enclosed by the parabola $y = 6x - x^2$ and the line y = x (8 marks)

Question Four

a) (i) Given that x_n is an approximation to the root of the equation $x^3 - 6x^2 + 6x - 8 = 0$, show using Newton-Raphson method that a better approximation xn+1 is given by:

$$x_{n+1} = \frac{2x_n^3 - 6x_n^2 + 8}{3x_n^2 - 12x_n + 6}$$

(ii) Hence by taking $x_0 = 5$ find the root of the equation correct to 3 d.p

1

2

2

11

0

-1

х

f(x)

b) A function f(x) is defined b:

Use Newton-Gregory forward difference formula to determine the poly nomial that fits the	data
hence estimate:	

3

38

4

95

5

194

6

347

(i) f(4.8) = f(6.4)

(ii)

Question Five

a) State the Maclaurin series

(i) Obtain the Maclaurian series for
$$si^{-1}\left(\frac{2}{2}\right)$$

up to the term x5.

(ii) Use the series to approximate correct to 4 d.p.

(11 marks)

Page 3

(6 marks)

(9 marks)

$$\sin^{-1}\left(\frac{2}{3}\right) = 0.7297$$

(iii) Calculate the error in the approximate value if

(12 marks)

$$f(x) = e^{3x} \sin 3x$$
 $\int_0^1 e^3 x \sin 3x$

b) Given the function , use Maclaurin series to expand f(x) up to x^3 evaluate

(8 marks)