TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN ELECTRICAL POWER ENGINEERING DIPLOMA IN TELECOMMUNICATION \& INFORMATION ENGINEERING DIPLOMA IN INSTRUMENTATION \& CONTROL ENGINEERING

AMA 2351: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of FIVE questions

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One (Compulsory)

$$
\underset{\sim}{A}=a_{1} \underset{\sim}{i}++a_{2} \underset{\sim}{j}+a_{3} \underset{\sim}{k}, \underset{\sim}{B}=b_{1} \underset{\sim}{i}+b_{2} \underset{\sim}{j}+b_{3} k
$$

a) Given that
(i) Show that A.B is a scalar quantity

$$
\underset{\sim}{r}=2 \underset{\sim}{i}++2 \underset{\sim}{j}-\underset{\sim}{k}, \underset{\sim}{r} \underset{\sim}{r}=6 \underset{\sim}{i}-3 \underset{\sim}{j}+2 \underset{\sim}{k}
$$

(ii) Hence find the scalar product
(2 marks)
(iii) Determine the angle between ${ }^{\sim 1}$ and
b) Evaluate the following integrals:

$$
\int_{-3}^{3} \int_{0}^{1} \int_{1}^{2}(x+y+z) d x d y d z
$$

(i)

$$
\int_{0}^{\pi} \int_{0}^{a \sin \theta} r d r d \theta
$$

(ii)

$$
y=x^{2} \quad y-2 x-3=0
$$

c) Find the area enclosed by and the line hence sketch the area under the graph.
(4 marks)

$$
A=\left[\begin{array}{ccc}
-2 & -1 & 0 \\
-6 & 2 & -3 \\
0 & -1 & 2
\end{array}\right]
$$

d) Given that

Determine the Eigen values and associated Eigen vectors
(10 marks)
Question Two

$$
A=3 \underset{\sim}{i}+2 \underset{\sim}{j}-\underset{\sim}{k}, B=\underset{\sim}{i}-\underset{\sim}{j}+\underset{\sim}{k} \quad \underset{\sim}{C}=\underset{\sim}{i}-\underset{\sim}{k}
$$

a) Given the vector

Determine:

(i) A.B
(2 marks)

$$
|A \times C|
$$

(ii)
(iii) The angle between A and B
b) Evaluate the integral using Green's theorem:

$$
\int\left(2 x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y
$$

where C is the boundary in the x -y plane of the area bounded by x -axis and the semi circle $x^{2}+y^{2}=1$

Question Three

$$
A=x^{3} y \underset{\sim}{i}+(x+z) y \underset{\sim}{j}+x^{2} z^{2} \underset{\sim}{k} \quad \Phi=2 x^{2} y+x z y-4 y^{2} z^{2}-5
$$

a) If
and
Determine at $(1,1,3)$
(3 marks)
(i) Div A
θ
(ii) Grad
(iii) Curl A

$$
A=3 \underset{\sim}{i}-\underset{\sim}{i}+2 \underset{\sim}{k}, B=\underset{\sim}{i}+3 \underset{\sim}{j}-2 \underset{\sim}{k} \quad A \times \underset{\sim}{B}
$$

b) Given two vectors

$$
C=9 \underset{\sim}{i}+2 \underset{\sim}{j}+\underset{\sim}{k}
$$

Show that $\sim \sim$ is perpendicular to the vector
(3 marks)

$$
f(x, y, z)=x y z-2 y^{2} z+x^{2} z^{2} \quad \text { divgrad } \Phi
$$

c) (i) If determine at $(2,4,1)$

$$
\Phi=4 x z^{3}-3 x^{2} y^{2}
$$

(ii) Determine a unit normal to the surface

$$
\text { at }(2,-1,2)
$$

(4 marks)

Question Four

a) Evaluate the following integrals:

$$
\int_{0}^{1} d x \int_{0}^{2} e^{y / x} d y
$$

(i)

$$
\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{x 2+y 2}}^{2} x y z d z d y d x
$$

(ii)
(4 marks)
(6 marks)

$$
x^{2}+y^{2}=4 \quad y+z=3, z=0
$$

b) Find the volume bounded by the cylinder and the plane
(10 marks)

Question Five

a) Find the Eigen values and corresponding Eigen vectors of the matrix:

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)
$$

b) A linear time in various system is characterized by the vector differential equation:

$$
\frac{d x}{d t}=A \underset{\sim}{\underset{\sim}{x}} \underset{\text { where }}{ } A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

$$
\Phi(t)
$$

Find the state transition matrix of the system

$$
|A|=\left|\begin{array}{cc}1-x & 2 \\ 2 & 1-x\end{array}\right|=0
$$

determine the value of two singular matrix (2 marks)

