
 TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

 SciencesDEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 12)

AMA 2351: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}
$$

a) (i) Use Taylors series to find

$$
f(z)=\bar{z}
$$

(ii) Use the definition to find the derivation of , if it exists
b) (i) Use the trapezoidal rule with $\mathrm{n}=8$ to estimate:

$$
\int_{1}^{5} \sqrt{1+x^{2}} d x
$$

$$
\oint_{C} y^{3} d x-x^{3} d y
$$

(ii) Evaluate where C is positively oriented circle of radius 2 centred at the origin
(8 marks)

Question Two

$$
x^{3}-x-1=0
$$

a) Use Newton-Raphson's method to find the only real root of the equation correct to 9 decimal places
(10 marks)
b) Find the first three non-zero terms in the Taylor series for $f(x)=e^{x} \cos x$ about $\mathrm{x}=0$ ($\mathbf{1 0}$ marks)

Question Three

$$
\begin{equation*}
x=r \cos \theta \quad y=r \sin \theta \tag{5marks}
\end{equation*}
$$

a) (i) Determine the Jacobian of x and y, given that and

$$
\sum_{j=1}^{\infty} \frac{(3+2) i}{(5+1)^{5}}
$$

(ii) Show that the series
converges
(5 marks)

$$
\lim _{x \rightarrow 0}\left\{\frac{1}{\sin x}=\frac{1}{x}\right\}
$$

b) Use Maclaurin series to find
(10 marks)

Question Four

a) The vertical distance covered by a rocket from $t=8$ to $t=30$ seconds is given by:

$$
x=\int_{8}^{30}\left\{2000 \ln \left[\frac{140,000}{140,000-2100 t}\right]-9.8 t\right\} d t
$$

(i) Use the single segment trapezoidal rule to find the distance covered for $t=8$ to $t=30$ seconds.
(5 marks)

$$
\int_{c} y^{3} d x-x^{3} d y
$$

(ii) Use Green's theorem to evaluate radius 2
where C is the positively oriented circle of
(7 marks)
b) Use the Lagrange multiplier method to find the greatest and least distances from the point $(2,1,2)$ to

$$
x^{2}+y^{2}+z^{2}=1
$$

the sphere with the equation
(8 marks)

Question Five

$$
f(x, y)=5 x-3 y
$$

$$
x^{2}+y^{2}=136
$$

a) Find the maximum and minimum of subject to the constraint

$$
\lim _{x \rightarrow 0} \frac{\ln \cos x}{x^{2}}
$$

b) Use Maclaurin series to evaluate
$f=f(x, y) \quad x=u^{2} \quad y=u / v$
c) If and and find the Jacobian transformation of f

