

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 DIPLOMA IN MARINE ENGINEERING (DMAE 6)

EMR 2311: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\underset{\sim}{A}=2 i+2 j-k \quad \underset{\sim}{B}=3 i-6 j+2 k \quad \underset{\sim}{A} \quad \underset{\sim}{B}
$$

a) (i) Given and determine the direction cosines of and , and hence the angle between them

$$
\underset{\sim}{A}=i+3 j-2 k, \underset{\sim}{B}=2 i-j+2 k \quad \underset{\sim}{C}=p i+j-k \quad \underset{\sim}{A}, \underset{\sim}{B} \text { and } \underset{\sim}{C}
$$

(ii) Given

 and and are coplanar determine the value of P .(4 marks)
b) (i) Evaluate the integral:

$$
\begin{equation*}
\int_{-1}^{2} \int_{-3}^{3}\left(y^{2}-2 x y\right) d x d y \tag{4marks}
\end{equation*}
$$

$$
y=x^{2} \quad y=2 x+3
$$

(ii) Use double integrals to determine the area bounded by the curve and the
(8 marks)
c) Use determinants to solve the following simultaneous equations:

$$
\begin{aligned}
& 2 x+3 y-z-4=0 \\
& 3 x+y+2 z-13=0 \\
& x+2 y-5 z+11=0
\end{aligned}
$$

(9 marks)

Question Two

$$
\underset{\sim}{F}=\underset{\sim}{A} \times(\underset{\sim}{B} \times \underset{\sim}{C}) \quad \underset{\sim}{A}=3 t^{2} i+(2 t-3) j+4 t k \quad \underset{\sim}{B}=2 i+4 t j+(3-3 t) k \quad \underset{\sim}{C}=2 t i-3 t^{2} j-2 t k
$$

a) If where and

$$
\int_{0}^{1} \underset{\sim}{F} d t
$$

determine

(7 marks)

$$
\phi=x y^{2}+y z^{2}-x^{2} \quad \underset{\sim}{A}=x^{2} y z i+x y^{3} j-3 y^{2} z^{3} k
$$

b) Given and , determine at point $(1,+2,-1)$:
(i) Grad
(ii) Unit normal vector
(iii) Div A
(iv) Curl A
(13 marks)

Question Three

a) Evaluate the following integrals:

$$
\int_{0}^{2} \int_{0}^{\pi / 2} 5 \cos \theta \cdot d \theta d x
$$

(i)

$$
\int_{1}^{2} \int_{2}^{4}(x+2 y) d x d y
$$

(ii)

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{x}(x-2 y+z) d z d y d x
$$

(iii)

$$
\iint\left(x^{2}+y^{2}\right) d y d x \quad x+y \leq 1
$$

b) Evaluate
over the region in the positive quadrant for which
(7 marks)

Question Four

a) Determine the value of x which satisfy the following equation.

$$
\left|\begin{array}{ccc}
x & x+3 & x+2 \tag{3marks}\\
3 & -3 & -1 \\
2 & -2 & -2
\end{array}\right|=0
$$

b) Solve the following simultaneous using inverse matrix.

$$
\begin{align*}
& 2 x+y+z=6 \\
& x+2 y+3 z=6.5 \\
& 4 x-2 y-5 z=2 \tag{17marks}
\end{align*}
$$

Question Five

$$
\underset{\sim}{V}=x y^{2} i+2 x^{2} y^{2} j-3 y z^{2} k
$$

$$
\underset{\sim}{V}
$$

a) If determine curl at point $(1,-1,-1)$

$$
\int_{1}^{2} \int_{0}^{3} x^{2} y d x d y
$$

b) (i) Evaluate

$$
r=4(1+\cos \theta)
$$

(ii) Use double integral to determine the area enclosed by the polar curve and the $\theta=0 \quad \theta=\pi$ radius vector at and

