
 TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN MECHANICAL ENGINEERING (DMEN VI)

AMA 2351: ENGINEERING MATHEMATICS VI
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

You should have the following for this examination

- Answer Booklet
- Mathematical Table

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\underset{\sim}{A}=2 i+2 j-k \quad \underset{\sim}{B}=3 i-6 j+2 k \quad \underset{\sim}{A} \quad \underset{\sim}{B}
$$

a) (i) Given and , determine the direction cosines of and and hence the angle between them.

$$
\underset{\sim}{A}=i+3 j-k, \quad B=2 i-j+2 k \quad \underset{\sim}{C}=p i+j-k
$$

(ii) Given and are coplanar vectors, determine the value of P .
(4 marks)
b) (i) Evaluate the integral:

$$
\int_{-1}^{2} \int_{-3}^{3}\left(y^{2}-2 x y\right) d x d y
$$

(4 marks)

$$
y=x^{2} \quad y=2 x+3
$$

(ii) Use double integral to determine the area bounded by the curve and
(8 marks)
c) A machine produces 20% defectives components. In a sample of 6 drawn at random, determine he probability:
(i) There will be 4 defective items
(ii) There will not be more than 3 defective items
(8 marks)

Question Two

a) Given

$$
\begin{align*}
& A=3 t^{2} i+(2 t-3) j+4 t k \\
& B=2 i+4 t j+(3-3 t) k \\
& C=2 t i-3 t^{2} j-2 t k \\
& \underset{\sim}{A} \times \underset{\sim}{B} \times \underset{\sim}{C}\left|=|\underset{\sim}{A} \cdot \underset{\sim}{C}| \underset{\sim}{B}-|\underset{\sim}{A} \cdot \underset{\sim}{B}|_{\sim}^{C} \quad \int_{0}^{1} \underset{\sim}{F} d t \quad \underset{\sim}{F}=\underset{\sim}{A} \times \underset{\sim}{B} \times \underset{\sim}{B}\right| \\
& \text { and determine where } \tag{7marks}
\end{align*}
$$

$$
\underset{\sim}{\phi}=x y^{2}+y z^{2}-x^{2} \quad \underset{\sim}{A}=x^{2} y z i+x y^{3} j-3 y^{2} z^{3} k
$$

b) Given and , determine at point $(1,2,-1)$:
ϕ
(i) Grad
(ii) Unit normal vector
(iii) Div A
(iv)Curl A

Question Three

a) Evaluate the following integrals:

$$
\int_{0}^{2} \int_{0}^{\pi / 2} 5 \cos \theta \cdot d \theta
$$

(i)

$$
\int_{1}^{2} \int_{2}^{4}(x+2 y) d x d y
$$

(ii)

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{x}(x-2 y+z) d z d y d x
$$

(iii)

$$
\iint\left(x^{2}+y^{2}\right) d y d x \quad x+y \leq 1
$$

b) Evaluate
over the region in the positive quadrant for which
(7 marks)

Question Four

a) The mean diameter of a sample of 400 , rollers is $22-50 \mathrm{~mm}$ and the standard deviation is 0.50 cm .

$$
22.36 \pm 0.53 \mathrm{~mm}
$$

Rollers are acceptable within diameters . Determine the probability of a roller being within the acceptable limits.
(6 marks)
b) If 2% of components produced by a company are defective, determine the probability that a sample of 60 components:
(i) Not more than 3 components are defective
(ii) At least 2 components are defective
c) A quality control Engineer in charge of testing whether or not 90% of the DVD players produced by his company conform to specifications. To do this, the Engineer randomly selects a batch of twelve DVD players from each day's production. The day's production is acceptable provided not more than one DVD player fails to meet specification. Determine the probability:
(i) The Engineer incorrectly passes a day's production as acceptable if only 80% of the days DVD actually conform to specification
(ii) The Engineer unnecessarily requires the entire day's production to be tested if in fact 90% of the DVD players conform to specification.
(6 marks)

Question Five

$$
Q=x y z-2 y^{2} z+x^{2} z^{2} \quad \operatorname{div}(\operatorname{grad} \phi)
$$

a) (i) If , determine at point $(2,4,1)$
(5 marks)

$$
\underset{\sim}{F}=x^{2} y z i+x y z^{2} j+y^{2} z
$$

(ii) If
, determine curl F at point $(2,1,1)$

$$
\iiint_{R}(x+y+) z d x d y d z \quad 0 \leq x \leq 1,1 \leq y \leq 2,2 \leq z \leq 3
$$

b) Evaluate where R is bounded by
(8 marks)

