THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF MECHANICAL \& AUTOMOTIVE ENGINEERING

INSTITUTIONAL BASED PROGRAMME
DIPLOMA IN MECHANICAL ENGINEERING (PRODUCTION) DIPLOMA IN AUTOMOTIVE ENGINEERING

ENGINEERING MATHEMATICS V

SERIES: NOVEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

This paper consists of FIVE questions

- Answer Booklet
- Mathematical Table/Scientific Calculator
- Drawing Instruments
- Abridged Laplace Transforms Table

Answer question ONE (COMPULSORY) in SECTION A and any other TWO questions in SECTION B

Marks are indicated for each part of the question
This paper consists of THREE printed pages

QUESTION ONE

a) Sketch at least three periods of each of the following functions stating whether the functioned odd, even or neither giving reasons for your answer.

$$
f(x)= \begin{cases}1, & -\pi \leq x \leq 0 \\ x, & 0 \leq x \leq \pi\end{cases}
$$

i)

$$
f(x)=x,-\pi \leq x \leq \pi
$$

ii)

$$
f(x)=\left\{\begin{array}{c}
-x, \\
x, \\
x, \quad 0 \leq x \leq \pi \leq 0
\end{array}\right.
$$

iii)

$$
f(x)=x^{2},-\pi \leq x \leq \pi
$$

b) Sketch the function and show that the Fourier series for the function

$$
f(x)=x^{2},-\pi \leq x \leq \pi \underset{\text { may be given by }}{ } f(x)=x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}
$$

QUESTION TWO

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-2 & 1 & 2 \\
3 & -1 & -1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
4 & -10 & -8 \\
-1 & 7 & 5
\end{array}\right]
$$

a) Given that and
i) Determine the product AB
ii) Hence solve the following simultaneous equations

$$
\begin{aligned}
& x+2 y+3 z=-6 \\
& -2 x+y+2 z=1 \\
& 3 x-y-z=1
\end{aligned}
$$

b) Use Crammers rule to solve the simultaneous equation

$$
\begin{aligned}
& 2 x+3 y+z=8 \\
& 3 x-5 y-2 z=4 \\
& 5 x+2 y-42=-7
\end{aligned}
$$

QUESTION THREEA

$$
f(x)=\left\{\begin{array}{cl}
-\cos x, & -\pi \leq x \leq 0 \\
\cos x, & 0 \leq x \leq \pi \\
f(x+2 \pi) &
\end{array}\right.
$$

A function is defined by
i) Sketch the function for at least 3 periods.
ii) State whether the function is odd. even or neither. Give reason for your answer

$$
\frac{\pi \sqrt{2}}{16}=\frac{1}{1 \times 3}-\frac{1}{5 \times 7}+\frac{1}{9 \times 11} L
$$

iii) Find the Fourier series hence show that

QUESTION FOUR

$$
A=\left[\begin{array}{ccc}
14 & 9 & 33 \\
13 & 11 & 36 \\
17 & 2 & 22
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 & 6 \\
3 & 5 & 7
\end{array}\right]
$$

(a) Given the matrices

$$
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B
$$

i) Show that
ii) Determine the inverse of AB .
(6marks)

$$
A=\left[\begin{array}{lrr}
2 & 1 & -1 \\
1 & -2 & 3 \\
-2 & 1 & 2
\end{array}\right] \quad B=\left[\begin{array}{lrr}
1 & -1 & 2 \\
-2 & 1 & 3 \\
2 & -1 & 1
\end{array}\right]
$$

(b) Given the matrices

$$
(A+B)^{2}=A^{2}+A B+B A+B^{2}
$$

Show that
c) A certain manufacturing company is trying to promote its sales, in the area of public transport. It sells 3 rims, 2tyres and a tube for Kshs. 91000; 4 rims, a tyre and 2 tubes for Kshs. 110,000 while a rim ,3tyres and 2 tubes costs Kshs.54000.Use crammers rule to determine the cost of each of the three accessories.

QUESTION FIVE

$$
3 A+2 B-C
$$

a) (i)

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right], B\left[\begin{array}{l}
0 \\
b
\end{array}\right] \begin{aligned}
& b \\
& 0
\end{aligned}, C=\begin{aligned}
& 1 \\
& c
\end{aligned}
$$

, Hence find the value of a, b and c

$$
3 A+2 B-C=0
$$

if
(3marks)

$$
A=\left[\begin{array}{cc}
1-x & 3 \\
3 & 1-x
\end{array}\right]
$$

ii) Given the matrix
.Give the two singular matrices

$$
f(x)=-x, \quad-1 \leq x \leq 1
$$

b) Determine the Fourier series for the function define Hence sketch the function for at least three periods

$$
A=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 1 \\
2 & 2 & 1
\end{array}\right]
$$

c) Given the matrix
(i) evaluate
$15 x+23 y+9 z=3$
$9 x+15 y+7 z=-5$
$14 x+18 y+8 z=0$
(ii) Find and hence solve

