TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN MECHANICAL ENGINEERING (DMEN 5)

AMA 2350: ENGINEERIGN MATHEMATICS V
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

This paper consists of FOUR printed pages

Question One (Compulsory)

a) For the function defined by:

$$
\begin{array}{ll}
f(x)=0 & -\pi \leq x \leq-\pi / 2 \\
f(x)=4 & -\pi / 2 \leq x \leq \pi / 2 \\
f(x)=0 & \pi / 2 \leq x \leq \pi
\end{array}
$$

(i) Sketch the function between -2π to 2π
(ii) Obtain the Fourier series for the function
(11 marks)
b) Solve for x, y and z in the following simultaneous equations using Crammer's rule.

$$
\begin{aligned}
& 2 x+3 y-z=4 \\
& 3 x+y+2 z=13 \\
& x+2 y-5 z=-11
\end{aligned}
$$

c) Table 1 shows the distribution or marks of 42 students in mathematics CAT.

Table 1

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	1	8	10	9	8	4	2

Determine:
(i) The mean mark
(ii) The standard deviation

Question Two
a) Determine the value of x for which:

$$
\left|\begin{array}{ccc}
x & x+3 & x+2 \\
3 & -3 & -1 \\
2 & -2 & -2
\end{array}\right|=0
$$

b) Use the method of determining the inverse of a matrix to solve the following simultaneous equations:

$$
\begin{aligned}
& 2 x+y+z=6 \\
& x+2 y+3 z=6.5 \\
& 4 x-2 y-5 z=2
\end{aligned}
$$

a) Table 2 shows the distribution by time in minutes taken by 65 employees to complete a certain task:

Table 2

Time (min)	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$
Frequency	8	10	16	14	10	5	2

Calculate:
(i) Lower and upper quartile
(ii) Third decile
(iii) 35th percentile
(10 marks)
b) Table 3 shows the distribution of lengths of 100 bolts in millimeters:

Table 3

Length	$100-103$	$104-107$	$108-111$	$112-115$	$116-119$	$120-123$
Frequency	1	15	42	31	8	3

By taking the assumed mean to be 109.5 use coding procedure to determine:
(i) The mean length
(ii) The standard deviation
(10 marks)

Question Four

a) Define the following periodic function:

X
b) Obtain the half-range sine series to represent the function defined by:

$$
\begin{aligned}
& f(x)=6 \quad 0 \leq x \leq \pi \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

c) Determine the Fourier series of the periodic function defined by:

$$
\begin{aligned}
& f x=0 \quad-\pi \leq x \leq 0 \\
& f(x)=2 \quad 0 \leq x \leq \pi \\
& f(x)=f(x+2 \pi)
\end{aligned}
$$

(10 marks)

Question Five

a) In a motor firm selling cars, the total cost of three Subaru Cars, two Nissan cars and Four Mercedes cars is ksh $9,160,1000$, the total cost for two Subaru cars, two Nissan cars and three Mercedes cars is ksh $7,180,000$; the total cost of four Subaru cars three Nisan cars and four Mercedes cars is ksh 10,800,000.
(i) Represent this information in a matrix form
(3 marks)
(ii) Use the inverse of a matrix method to determine the price of each type of the cars.
(17 marks)

