

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS

DIPLOMA IN ELECTRICAL POWER ENGINEERING (DEPE) DIPLOMA IN INSTRUMENTATION & CONTROL ENGINEERING (DICE) DIPLOMA IN TELECOMMUNICATION & INFORMATION ENGINEERING (DTIE)

AMA 2350: ENGINEERIGN MATHEMATICS V

END OF SEMESTER EXAMINATION SERIES: DECEMEBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consist of FIVE questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

$$f(x) = xy^2 + jx^2y$$

find the point where the Cauchy-Reimann equations are satisfied. (5 marks)

b) Determine if

a) Given that

$$Z = 2xy + j(x^2 - y^2)$$
 is analytic.

$$F(x) = \begin{cases} x + \pi & 0 \le x \le \pi \\ -x - \pi & -\pi \le x \le 0 \end{cases}$$

(8 marks)

(6 marks)

 $f(x) = \begin{cases} x & 0 \le x \le \frac{\pi}{2} \\ \frac{\pi}{2} & \frac{\pi}{2} < x < \pi \end{cases}$

(7 marks)

d) Determine half-Fourier sine series of the function **Question Two**

$$f(z) = j - \frac{1}{\pi} \ln Z$$

a) Given that , express f(z) in terms of U and V hence show that U and V are harmonic (10 marks) |z| = 4

b) The is described in the z-plane in the anticlockwise manner. Determine its image in the w-plane $w_{z} = z + 1$

$$W = \frac{z+1}{z-2}$$

under the transformation and state the direction of development. **(10 marks)** c) h of 1500 6 month bottles have an average contents of 753ml and the standard deviation of the

Question Three

 $- \le x \le 1$

a) Consider a function f(x) defined in the interval

(I) State the necessary and sufficient condition that the function is:

- (i) ODD
- (ii) EVEN
- (II) State the harmonic series representing the function of it is:
 - (i) ODD
 - (ii) EVEN

$$f(x) = \frac{\pi - x}{2}(0, 2\pi) \qquad \qquad \frac{\pi}{4}$$

b) Expand the function

into Fourier series hence determine the series for (4 marks)

Question Four

(3 marks)

a) Apply Newton-Raphson method taking Xo = 2 to find correct to five d.p the root of the equation $e^{-x} - 2\cos x - 1 = 0$ (8 marks)

						(0 marks)			
X	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
f(x)	-0.3888	-0.0512	-0.0016	0	0.0016	0.0512	0.3888	1.6384	5

Use Newton-Gregory formula for interpolation to determine:

(i) f(-0.36)

(ii) f(0.75)

Question Five

 $f(x) = \begin{cases} x & 0 \le x \le \frac{\pi}{2} \\ \pi - 2 & \frac{\pi}{2} < x < \pi \end{cases}$

a) Determine half-range Fourier series for the function

 $U = \sin x \cosh y + 2 \cosh x \sinh y + x^2 + 4xy$

b) Show that the function

satisfies the Laplace equation.

(5 marks)

$$ex = -\frac{1}{2}x - 1$$

can be approximated as

c) Show that the root

can be approximated as

(9 marks)

(12 marks)

(6 marks)