TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN ELECTRICAL POWER ENGINEERING (DEPE) DIPLOMA IN INSTRUMENTATION \& CONTROL ENGINEERING (DICE) DIPLOMA IN TELECOMMUNICATION \& INFORMATION ENGINEERING (DTIE)

AMA 2350: ENGINEERIGN MATHEMATICS V
END OF SEMESTER EXAMINATION
SERIES: DECEMEBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
f(x)=x y^{2}+j x^{2} y
$$

a) Given that find the point where the Cauchy-Reimann equations are satisfied.

$$
Z=2 x y+j\left(x^{2}-y^{2}\right)
$$

b) Determine if is analytic.
c) Find the Fourier series of the function:

$$
F(x)=\left\{\begin{array}{cc}
x+\pi & 0 \leq x \leq \pi \\
-x-\pi & -\pi \leq x \leq 0
\end{array}\right.
$$

(8 marks)
d) Determine half-Fourier sine series of the function

$$
f(x)= \begin{cases}x & 0 \leq x \leq \pi / 2 \\ \frac{\pi}{2} & \pi / 2<x<\pi\end{cases}
$$

Question Two

$$
f(z)=j-\frac{1}{\pi} \ln Z
$$

a) Given that , express $f(z)$ in terms of U and V hence show that U and V are harmonic functions.

$$
|z|=4
$$

b) The is described in the z-plane in the anticlockwise manner. Determine its image in the w-plane

$$
W=\frac{z+1}{z-2}
$$

under the transformation
c) h of 15006 month bottles have an average contents of 753 ml and the standard deviation of the

Question Three

$$
-\leq x \leq 1
$$

a) Consider a function $\mathrm{f}(\mathrm{x})$ defined in the interval
(I) State the necessary and sufficient condition that the function is:
(i) ODD
(ii) EVEN
(II) State the harmonic series representing the function of it is:
(i) ODD
(ii) EVEN
(3 marks)

$$
f(x)=\frac{\pi-x}{2}(0,2 \pi) \quad \frac{\pi}{4}
$$

b) Expand the function
a) Apply Newton-Raphson method taking $\mathrm{Xo}=2$ to find correct to five d.p the root of the equation $e^{-x}-2 \cos x-1=0$
(8 marks)

\mathbf{x}	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1
$\mathbf{f (x)}$	-0.3888	-0.0512	-0.0016	0	0.0016	0.0512	0.3888	1.6384	5

Use Newton-Gregory formula for interpolation to determine:
(i) $\mathrm{f}(-0.36)$
(ii) $f(0.75)$
(12 marks)

Question Five

$$
f(x)=\left\{\begin{array}{cc}
x & 0 \leq x \leq \pi / 2 \\
\pi-2 & \pi / 2<x<\pi
\end{array}\right.
$$

a) Determine half-range Fourier series for the function

$$
U=\sin x \cosh y+2 \cosh x \operatorname{sh} y+x^{2}+4 x y
$$

b) Show that the function
satisfies the Laplace equation.
(5 marks)

$$
e x=-1 / 2^{x-1}
$$

$$
x_{n+1}=\frac{x_{n} e^{x n}-e^{x n}-1}{e^{x n}+1 / 2}
$$

c) Show that the root can be approximated as

