

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN MARINE ENGINEERING

AMA 2303: ENGINEERING MATHEMATICS V

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: MARCH 2014 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
 - Mathematical Tables

This paper consist of **FIVE** questions in **TWO** sections **A** & **B** Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One

(i)

(ii)

a) Solve the following differential equations: $\left(xy - x^2\right)\frac{dy}{dy} = y^2$

(16 marks)

 $f(x) = \sin 2x$

b) Use Maclaurin's theorem to obtain the three terms for the power series of the function

(7 marks) $3\sin x + 4x - 5 = 0$

c) Use the Newton-Raphson iterative method to determine the root of the equation taking the first approximation of x = 0.75, correct to four significant figures. (7 marks)

SECTION B (Answer any TWO questions from this section)

 $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 2e^{-2x}$

Question Two

a) Solve the following differential equation:

$$y^3(x^2-1) + x^2\frac{dy}{dx} = 0$$

(5 marks)

$$\frac{dv}{dt} + kv^2 = 0$$

where V is its velocity and k

is a constant. Show that if
$$V = V_0$$
 when $t = 0$ then

b) The motion of a particle in a resting medium is described by

c) A function is defined by the data in Table 1. Use the Newton-Gregory backward difference interpolation formula to estimate f(3.8)

 $V = \frac{V_o}{1 + ktv_o}$

Table 1 0 Х 3 4 1 2 1.00 1.50 2.20 3.10 4.60 f(x)marks)

Question Three

(9

(6 marks)

a) The cooling of a body is proportional to the excess temperature above that of the surrounding i.e. it follows Newtons-Law of cooling. If the room temperature is 20°C, and taken ten minutes for its temperature to fall from 100°C to 60°, determine the time taken for it temperature to reach 25°

(9 marks)

 $\tan(x+h)$

as a power series of x + 1

b) Use Taylor's theorem to obtain the first three terms for the power series of . Hence obtain $\pi_{A} + h$ and use it to determine tan 46° correct to four decimal places. the power series of

(11 marks)

(8 marks)

Question Four

a) Use Maclaurin's theorem to obtain the first three terms for the power series of the function $f(x) = (e^{x} + 1) \ln x$ (12 marks)

in

$f(x) = x^4 + 2$

b) Use the Taylors series to express the function

Question Five

Solve the following differential equations

$$x\frac{dy}{dx} + 2y = x^2$$
a) (4 marks)

$$2\frac{d^2q}{at^2} + 5\frac{dq}{dt} - 3q = 2\sin 3t$$

given that when t = 0, q = 0, (16 marks)