

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN MARINE ENGINEERING

AMA 2303: ENGINEERING MATHEMATICS V

SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MARCH 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Tables

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

SECTION A (COMPULSORY)

Question One

a) Solve the following differential equations:

$$
\left(x y-x^{2}\right) \frac{d y}{d x}=y^{2}
$$

(i)

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 e^{-2 x}
$$

(ii)
b) Use Maclaurin's theorem to obtain the three terms for the power series of the function
c) Use the Newton-Raphson iterative method to determine the root of the equation taking the first approximation of $\mathrm{x}=0.75$, correct to four significant figures.

SECTION B (Answer any TWO questions from this section)

Question Two

a) Solve the following differential equation:

$$
\begin{equation*}
y^{3}\left(x^{2}-1\right)+x^{2} \frac{d y}{d x}=0 \tag{5marks}
\end{equation*}
$$

$$
\frac{d v}{d t}+k v^{2}=0
$$

b) The motion of a particle in a resting medium is described by where V is its velocity and k

$$
V=\frac{V_{o}}{1+k t v_{o}}
$$

is a constant. Show that if $V=V_{o}$ when $t=0$ then
c) A function is defined by the data in Table 1. Use the Newton-Gregory backward difference interpolation formula to estimate $f(3.8)$

Table 1

x	0	1	2	3	4	
$\mathrm{f}(\mathrm{x})$		1.00	1.50	2.20	3.10	4.60

marks)

Question Three

a) The cooling of a body is proportional to the excess temperature above that of the surrounding i.e. it follows Newtons-Law of cooling. If the room temperature is $20^{\circ} \mathrm{C}$, and taken ten minutes for its temperature to fall from $100^{\circ} \mathrm{C}$ to 60°, determine the time taken for it temperature to reach 25°
(9 marks)

$$
\tan (x+h)
$$

b) Use Taylor's theorem to obtain the first three terms for the power series of
. Hence obtain

$$
\pi / 4+h
$$

the power series of and use it to determine tan 46° correct to four decimal places.
(11 marks)

Question Four

a) Use Maclaurin's theorem to obtain the first three terms for the power series of the function $f(x)=\left(e^{x}+1\right) \ln +x$
(12 marks)
b) Use the Taylors series to express the function $f(x)=x^{4}+2$
(8 marks)

Question Five

Solve the following differential equations

$$
x \frac{d y}{d x}+2 y=x^{2}
$$

a)
(4 marks)

$$
2 \frac{d^{2} q}{a t^{2}}+5 \frac{d q}{d t}-3 q=2 \sin 3 t \quad \frac{d q}{d t}=0
$$

b)

$$
\begin{equation*}
\text { given that when } \mathrm{t}=0, \mathrm{q}=0 \text {, } \tag{16marks}
\end{equation*}
$$

