

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS DIPLOMA IN ELECTRICAL POWER ENGINEERING (DEPE V)
AMA 2301: ENGINEERING MATHEMATICS V
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: MARCH 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Table
- Scientific Calculator/Drawing Instruments

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
SECTION A (COMPULSORY)

Question One

$$
f(z)=x y^{2}+i x^{2} y
$$

a) (i) Given that find the point where the canehy-Riemann equations area satisfied for the function.
(5 marks)

$$
z=2 x y+i\left(x^{2}-y^{2}\right)
$$

(ii) Determine if
is analytic
(6 marks)

$$
f(x)=\left\{\begin{array}{ccc}
x+\bar{u} & \text { for } & 0 \leq x \leq \bar{u} \\
-x-\bar{u} & & -\bar{u} \leq x \leq 0
\end{array}\right.
$$

b) (i) Find the fourier series to represent
(ii) Represent the following function by a half range fourier sine series.

$$
f(x)= \begin{cases}x & 0<x \leq \frac{\pi}{2} \\ \bar{u} & \frac{\pi}{2} \\ \frac{\pi}{2}<x \leq \pi\end{cases}
$$

c) Devise a fixed iteractive schemes to find the roots of the quadratic equation:

$$
2 x^{2}-24 x+41=0
$$

(4 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

$$
w=f(z)=z^{2}+2 z-3 z . \quad w=f(z)=u(x, y)+i V(x, y)
$$

a) Express the function

$$
f(1+i)
$$

then find the value of

$$
|z-3 i|=3 \quad w=\frac{1}{z}
$$

b) Find the image
under the mapping
(7 marks)

$$
\begin{aligned}
& \text { c) } u=x^{2}-y^{2} \quad v=\frac{y}{x^{2}+y^{2}} \\
& \text { Prove that } \\
& \text { conjugates. }
\end{aligned} \text { and are harmonic functions of } \quad(x, y) \text { but are not harmonic }
$$ in the form

$$
f(x)=\left\{\begin{array}{cc}
0 & -5<x<0 \\
5 & 0<x<5
\end{array}\right.
$$

$$
f(x) \quad f(x+10)
$$

a) A function is defined as
(i) Sketch the function for at least three periods
(ii) State whether the function is odd, even or neither
(iii) Determine the Fourier series.
b) A periodic wave function if fig 1 below represents an electromotive force in an electric circuit.
(i) Determine the analytic representation of the wave hence resulting Fourier series
(ii) Using a suitable substitution and the series in b(i) above show that:

$$
\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

Question Four

$f(x)=x^{3}+4 x^{2}-10=0$
a) Solve using Newton's method.

$$
f(x)=x-\cos x=0
$$

b) Use the interaction method to solve

Question Five

$$
x_{n} \quad x^{3}-2 x^{2}+2=0
$$

a) Given that is an approximation to the root of the equation using Newton

$$
x_{n r 1}
$$

Raphson method that an approximation is given by:

$$
\frac{x_{n+1}=2 x_{n}^{3}-2 x_{n}^{2}-2}{3 x_{n}^{2}-4 x_{n}}
$$

$$
x_{0}=-0.85
$$

Hence by taking find to five decimal places the root of the equation.
b) Given the table below, use Newton-Gregory interpolation formula to determine:

$$
f(-3)
$$

(i)

$$
f(4)
$$

(ii)

x	-2	-1	0	1	2
$\mathrm{f}(\mathrm{x})$	-10	0	4	8	18

