

TECHNICAL UNVERSITY OF MOMBASA

Faculty of Engineering & Technology in Conjunction with Kenya Institute of Highways and Building Technology (KIHBT)

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

HIGHER DIPLOMA IN ELECTRONIC ENGINEERING

EEA 3204: ENGINEERING MATHEMATICS IV

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: AUGUST 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- A non-programmable Scientific Calculator

This paper consists of **FOUR** questions. Answer any **THREE** questions All questions carry equal marks
Maximum marks for each part of a question are as shown

This paper consists of **THREE** printed pages

Question One

a) Define 2-transform (2 marks)

 $h\{n\} = \delta[n] + \frac{1}{6}\delta[n-1] - 1[n-2]$

b) Find the zero's of (6 marks)

$$f(x) = \begin{cases} -1 < & if -2 < x < 0 \\ 1 < & 0 < x < 2 \end{cases}$$

c) Find the Fourier series of the function (6 marks)

Where P = 2L = 4, L = 2

$$\frac{x^2+1}{x^2-3x+2}$$

d) Resolve into partial fractions. **(8 marks)**

$$z = \cos 3x \sin 4y \qquad \frac{\delta z}{\delta x} \qquad \frac{\delta z}{\delta y}$$

e) Given that find and (8 marks)

Question Two

$$\frac{1}{\left(4-x\right)^2}$$

a) (i) Expand in ascending powers of x as far as the term in x3; using the binomial expansion.

(ii) What are the limits of x for which the expansion in (a) is true. (12 marks)

$$\frac{\sqrt[3]{1-3x}\sqrt{1+x}}{\left(1+\frac{x}{2}\right)^3}$$

b) Simplify given that powers of x above the first may be neglected. **(8 marks)**

Question Three

a) Determine the Fourier series for the function defined by:

$$ft = \begin{cases} 1 - t, & when, & -\pi \le t < 0 \\ 1 + t, & when, & 0 \le t \le \pi \end{cases}$$

Draw a graph of the function within and outside of the given range. (14 marks)

b) Find the term representing the third harmonic for the periodic function of period given by:

$$fx = \begin{cases} 0, & when -\pi \le x \le 0 \\ 1, & 0 \le x \le \pi \end{cases}$$

(6 marks)

Question Four

$$z = \left(\frac{(x-y)}{(x+y)}\right)_{f}$$

a) If

$$\frac{\delta^2 z}{\delta x^2}$$

(i)

$$\frac{\delta^2 z}{\delta x^2}$$

(ii)

$$\frac{\delta^2 t}{\delta x \delta y}$$

(iii)

$$\frac{\delta^2 z}{\delta y \delta x}$$

(iv)

(16 marks)

$$\frac{\delta z}{\delta x} \qquad \frac{\delta z}{\delta y} \qquad z = x^3 - 2xy + y^2$$

b) Find:

and given

(4 marks)

Question Five

$$x(z) = \frac{z^3 + 2z^2 + 1}{z^3}$$

a) Find an inverse transform of:

(8 marks)

$$\frac{32x^2 - 8x - 1}{(x+4)(x+1)(2x-1)}$$

b) Resolve

into partial fractions.

(12 marks)