

TECHNICAL UNVERSITY OF MOMBASA

 Faculty of Engineering \& Technology in Conjunction with Kenya Institute of Highways and Building Technology (KIHBT)DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING
HIGHER DIPLOMA IN ELECTRONIC ENGINEERING
EEA 3204: ENGINEERING MATHEMATICS IV SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: AUGUST 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- A non-programmable Scientific Calculator

This paper consists of FOUR questions. Answer any THREE questions
All questions carry equal marks
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

a) Define 2-transform

$$
h\{n\}=\delta[n]+\frac{1}{6} \delta[n-1]-1[n-2]
$$

b) Find the zero's of

$$
f(x)=\left\{\begin{array}{cc}
-1< & \text { if }-2<x<0 \\
1< & 0<x<2
\end{array}\right.
$$

c) Find the Fourier series of the function

$$
\text { Where } \mathrm{P}=2 \mathrm{~L}=4, \mathrm{~L}=2
$$

$$
\frac{x^{2}+1}{x^{2}-3 x+2}
$$

d) Resolve into partial fractions.
(8 marks)

$$
z=\cos 3 x \sin 4 y \quad \frac{\delta z}{\delta x} \quad \frac{\delta z}{\delta y}
$$

e) Given that find and

Question Two

$$
\frac{1}{(4-x)^{2}}
$$

a) (i) Expand in ascending powers of x as far as the term in $x 3$; using the binomial expansion.
(ii) What are the limits of x for which the expansion in (a) is true.
(12 marks)

$$
\frac{\sqrt[3]{1-3 x} \sqrt{1+x}}{\left(1+\frac{x}{2}\right)^{3}}
$$

b) Simplify given that powers of x above the first may be neglected.
(8 marks)

Question Three

a) Determine the Fourier series for the function defined by:

$$
f t= \begin{cases}1-t, & \text { when, }-\pi \leq t<0 \\ 1+t, & \text { when, } \quad 0 \leq t \leq \pi\end{cases}
$$

Draw a graph of the function within and outside of the given range.
(14 marks)
b) Find the term representing the third harmonic for the periodic function of period given by:

$$
f x=\left\{\begin{array}{rr}
0, & \text { when }-\pi \leq x \leq 0 \tag{6marks}\\
1, & 0 \leq x \leq \pi
\end{array}\right.
$$

Question Four

$$
z=\left(\frac{(x-y)}{(x+y)}\right)
$$

a) If find:

$$
\frac{\delta^{2} z}{\delta x^{2}}
$$

(i)

$$
\frac{\delta^{2} z}{\delta x^{2}}
$$

(ii)

$$
\frac{\delta^{2} t}{\delta x \delta y}
$$

(iii)

$$
\frac{\delta^{2} z}{\delta y \delta x}
$$

(iv)

$$
\frac{\delta z}{\delta x} \quad \frac{\delta z}{\delta y} \quad z=x^{3}-2 x y+y^{2}
$$

b) Find: and given

Question Five

$$
x(z)=\frac{z^{3}+2 z^{2}+1}{z^{3}}
$$

a) Find an inverse transform of:

$$
\frac{32 x^{2}-8 x-1}{(x+4)(x+1)(2 x-1)}
$$

b) Resolve into partial fractions.

