Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
HIGHER DIPLOMA IN BUILDING \& CIVIL ENGINEERING (HDBC 12S)

AMA 3251: ENGINEERING MATHEMATICS IV
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages
Question One (Compulsory)

$$
f(x)=\sin x
$$

a) Find the Maclaurin's series for
(8 marks)

$$
f(x)=\ln x
$$

b) Using the Taylor's series find the value for about $\mathrm{x}=2$.
(8 marks)
c) Solve the following simultaneous equations using Cramer's rule.
(7 marks)

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x-3 y+4 z=33 \\
& 3 x-2 y-2 z=2
\end{aligned}
$$

d) Find the Fourier series to represent:

$$
f(x)=\left\{\begin{array}{c}
x+\pi \tag{7marks}\\
-x-\pi
\end{array} \quad \begin{array}{c}
0 \leq x \leq \pi \\
-\pi \leq x \leq 0
\end{array}\right.
$$

Question Two

$$
f(x)=\ln (1+x)
$$

a) Get a Maclaurin's series for and use it to approximate the value of $\ln 1.5$ to the $5^{\text {th }}$ term.
(10 marks)

$$
e^{\frac{x}{2}}
$$

b) Expand as far as the term in x^{4}.
(10 marks)
Question Three

$$
\left(\begin{array}{ccc}
1 & 5 & -2 \\
3 & -1 & 4 \\
-3 & 6 & -7
\end{array}\right)
$$

a) Find the inverse of

$$
\left(\begin{array}{ccc}
1 & 4 & -3 \\
-5 & 2 & 6 \\
-1 & -4 & 2
\end{array}\right)
$$

b) Evaluate the determinant of Question Four

$$
f(x)=e^{9 x} \quad \text { for } 0<x<\pi
$$

a) Find the Fourier sine series for the function
(12 marks)

$$
\left(\begin{array}{ccc}
j 2 & (1+j) & 3 \\
(1-j) & 1 & j \\
0 & j 4 & 5
\end{array}\right)
$$

b) Determine the determinant of

$$
f(x)=x^{3}-10 x^{2}+6
$$

a) Find the Taylor's series for about $x=3$.
b) Represent the following function by a Fourier sine series:

$$
f(t)= \begin{cases}t, & 0 \leq t \leq \frac{\pi}{2} \\ \frac{\pi}{2}, & \frac{\pi}{2} \leq t \leq \pi\end{cases}
$$

