

Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS **DIPLOMA IN MECHANICAL ENGINEERING (DMEN 4)**

AMA 2251: ENGINEERING MATHEMATICS IV

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

 $F(t) = e^{2t}t^2 + e^{-t}\cos t$

a) (i) Determine the Laplace transform of

(4 marks)

$$F(s) = \frac{s+2}{s^2 - 4}$$

(ii) Determine the inverse Laplace transform of

(8 marks)

$$F(t) = e^{4t}$$

(iii) Obtain from first principles the Laplace transform of

(4 marks)

b) (i) Use Maclaurin's series to obtain the first three terms of the power series for $f(x) = \cos 2x$

(5 marks)

$$f(x) = x^4 + 2$$

(ii) Use Taylor's series to express the function

as a power series of x + 1

(8 marks)

c) Determine the Newton-Gregory forward difference interpolating polynomial for the data below. Hence evaluate f(2.5) **(6 marks)**

X	0	1	2	3	4
f(x)	1	7	23	55	109

Question Two

$$F(t) = \sin^2 t$$

a) Determine the Laplace transform

(3 marks)

$$F(s) = \frac{s+2}{s^2+2s+2}$$

b) Determine the inverse Laplace transform of

(5 marks)

c) Use Laplace transforms to solve the differential equation.

$$2\frac{dy}{dt} - y = \sin t$$

given at
$$t = 0$$
, $y = 1$

(12 marks)

Question Three

$$f(x) = (e^x + 1)\ln(1+x)$$

a) Use Maclaurin's series to obtain the first three terms of the power series for

(10 marks)

$$\tan(x+h)$$

b) Use Taylor's series to obtain the power series for

up to the term in h². Hence obtain the

$$\tan\left(\frac{\pi}{4} + h\right)$$

 $\tan 46^{\circ}$

power series for and use it to determine

correct to four decimal places.

(10 marks)

Question Four

$$x_0 = -1.3$$

a) Apply the Newton-Raphson method taking

$$x^3 - 6x^2 + 12 = 0$$

root of the equation

(6 marks)

b) The data in the table below defines a function:

X	(1	2	3	4	5	6
f	(x)	4	14	40	88	164	274

f(2.5)

to determine correct to 4 significant figures the

- (i) Use the Newton-Gregory forward difference formula to evaluate
- (ii) Use the Newton-Gregory backward difference formula to evaluate f (5.8)

(14 marks)

Question Five

a) Solve using the Laplace transforms of the differential equation:

$$\frac{dx}{dt} + 2x = 10e^{3t}$$

give at
$$t = 0$$
, $x = 6$

 $\cos\left(\frac{\pi}{3} + h\right)$

(10 marks)

$$f(x) = \cos(x+h)$$

b) Use Taylor's series to obtain the power series for

the power series for places.

and use it to determine the value of cos 62° correct to 4 decimal **(10 marks)**