TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN MECHANICAL ENGINEERING (DMEN 4)

AMA 2251: ENGINEERING MATHEMATICS IV
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown

Question One (Compulsory)

$$
F(t)=e^{2 t} t^{2}+e^{-t} \cos t
$$

a) (i) Determine the Laplace transform of

$$
F(s)=\frac{s+2}{s^{2}-4}
$$

(ii) Determine the inverse Laplace transform of
(8 marks)

$$
\begin{equation*}
F(t)=e^{4 t} \tag{4marks}
\end{equation*}
$$

(iii) Obtain from first principles the Laplace transform of
(ii) Use Taylor's series to express the function $f(x)=x^{4}+2$ as a power series of $\mathrm{x}+1$
(8 marks)
c) Determine the Newton-Gregory forward difference interpolating polynomial for the data below. Hence evaluate $f(2.5)$
(6 marks)

x	0	1	2	3	4
$f(x)$	1	7	23	55	109

Question Two

$$
F(t)=\sin ^{2} t
$$

a) Determine the Laplace transform
(3 marks)

$$
F(s)=\frac{s+2}{s^{2}+2 s+2}
$$

b) Determine the inverse Laplace transform of
c) Use Laplace transforms to solve the differential equation.

$$
2 \frac{d y}{d t}-y=\sin t
$$

$$
\begin{equation*}
\text { given at } \mathrm{t}=0, \mathrm{y}=1 \tag{12marks}
\end{equation*}
$$

Question Three

$$
f(x)=\left(e^{x}+1\right) \ln (1+x)
$$

a) Use Maclaurin's series to obtain the first three terms of the power series for
(10 marks)

$$
\tan (x+h)
$$

b) Use Taylor's series to obtain the power series for up to the term in h^{2}. Hence obtain the

$$
\tan (\pi / 4+h)
$$

power series for
$\tan 46^{\circ}$ and use it to determine correct to four decimal places.
(10 marks)

Question Four

$$
x_{0}=-1.3
$$

a) Apply the Newton-Raphson method taking to determine correct to 4 significant figures the

$$
x^{3}-6 x^{2}+12=0
$$

root of the equation
(6 marks)
b) The data in the table below defines a function:

\mathbf{x}	1	2	3	4	5	6
$\mathbf{f (x)}$	4	14	40	88	164	274

(i) Use the Newton-Gregory forward difference formula to evaluate $f(2.5)$
(ii) Use the Newton-Gregory backward difference formula to evaluate f (5.8)
(14 marks)

Question Five

a) Solve using the Laplace transforms of the differential equation:

$$
\frac{d x}{d t}+2 x=10 e^{3 t}
$$

$$
\begin{equation*}
\text { give at } t=0, x=6 \tag{10marks}
\end{equation*}
$$

$$
f(x)=\cos (x+h)
$$

b) Use Taylor's series to obtain the power series for up to the term in h^{4}. Hence obtain

$$
\cos (\pi / 3+h)
$$

the power series for and use it to determine the value of $\cos 62^{\circ}$ correct to 4 decimal places.

