

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 13M)

AMA 2151: ENGINEERING MATHEMATICS II
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Table

Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

a) From first $x \cos x$
a) From first principles, find first derivative for
(7 marks)

$$
\begin{equation*}
\frac{d y}{d x} \quad 10 x^{3} y+\frac{x}{y}=75 x^{3} \tag{6marks}
\end{equation*}
$$

b) Find given

$$
x=\sin t \quad y=\cos t
$$

c) A function is defined parametrically as and

$$
\begin{equation*}
t=\frac{\pi}{4} \tag{7marks}
\end{equation*}
$$

where
Question Two

$$
\frac{d y}{d x}
$$

a) Using appropriate rules find given:

$$
y=\frac{e^{3 x} \cos 2 x}{x \sin x}
$$

b) A closed cylinder is to be fabricated using a sheet metal. The cylinder will be of capacity $5 \mathrm{~m}^{3}$:
(i) Determine dimensions of the cylinder if minimum surface area for the sheet to be used is considered.
(ii) Prove that the surface area is minimum at the dimension obtained.
c) (i) Find stationary points for the function:

$$
y=8 x^{3}-24 x+11
$$

(ii) Determine the nature for the stationary points in c (i)

Question Three

$$
x y^{2}+x y-5=0
$$

a) Find the gradient at the point $\mathrm{x}=1$ for the function
b) (i) Find turning points for the function:

$$
y=x^{3}-3 x^{2}-4 x+12
$$

(ii) Sketch the function in b(i) given $\mathrm{y}=0$ when $\mathrm{x}=2$

Question Four

 $\frac{d y}{d x}$Find for the following:

$$
y \sin x+x \cos y=10 x^{3}+5
$$

(i)

$$
y=\arccos \left(x^{4}-5\right)
$$

(ii)

> (7 marks)
c) A moving particle covers distance sin meters during time t in seconds. The relationship formed is:

$$
s=10 t^{3}-5 t^{2}+2 t
$$

(i) Time taken when particle comes to rest
(ii) Time taken to attain an acceleration $\mathrm{f} 10 \mathrm{~m} / \mathrm{s}^{2}$
(iii) Distance covered when object comes to rest
d) A closed rectangular tank of capacity $18 \mathrm{~m}^{3}$ is to be fabricated. The height of the tank is to be 1.8 m :
(i) Find the dimensions of the tank considering minimum surface area of the material to used.
(ii) Show that the surface area is minimum at dimensions obtained.
(7 marks)

Question Five

a) Find first derivative for:

$$
x e^{y}+y e^{x}=x \tan y
$$

(i)

$$
y=\operatorname{arcsinh}\left(\frac{1}{x}\right)
$$

(ii)

$$
\frac{d y}{d x}
$$

b) Using logarithms determine given:

$$
\frac{e^{x^{2}} \cos 2 x}{\tan x}
$$

c) (i) A rectangular sheet of metal measures 25 cm by 35 cm . Squared pieces of the material area cut off from the four corners. An open box is formed when the sides are folded. Find the surface area of the box formed if it is a minimum.
(ii) Show that the surface area formed is a minimum

