

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

CERTIFICATE IN MECHANICAL ENGINEERING

AMA 1107: ENGINEERING MATHEMATICS II

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consist of **FIVE** questions in **TWO** sections **A** & **B** Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question One

a) Using trapezoidal rule with 8 intervals determine the area covered by from
$$x = 0$$
 to $x = 1$, giving your answer to 3 decimal places. (8 marks)

- θ **b)** Sketch the curve for values between 0° and 360° $y = \sin \theta$ (i) $y = \cos \theta$
 - (ii)
- c) Experimental values of the variables X and Y are as tabulated:

Х	0.100	0.125	0.160	0.200	0.400
Y	0.050	0.064	0.085	0.111	0.286

1 1 y x

Draw a graph of against hence express y in terms of x; SECTION B (Answer any TWO questions from this section)

Question Two

a) The table below shows experimental values of variables X and Y which are related by the equation: $v = Ab^{x}$

where A and B are constant:

Χ	2	4	6	8	10
Y	9.8	19.4	37.	74.0	144.
			4		4

By drawing a suitable straight line graph, determine the values of:

a) A

b) b

Question Three

(12 marks)

(8 marks)

(8 marks)

(4 marks)

(18 marks)

 $y = \tan \theta$ $v = \tan \theta$ θ for values of ranging from 0° to 360° by tabulating **a)** Sketch the graph for intervals of 30° (4 marks)

b) Solve for values between
$$0^{\circ}$$
 and 360° :

 $1 + \cos \theta = 2 \sin^2 \theta$

c) By using a right angled triangle of base x; height = y and hypotenuse = r; show that (6 Marks)

Question Four

- a) A square pyramid with the side 3cm, height 4cm and slant height 5cm. Determine:
 - Its surface area (i)
 - (ii) Its volume
- $\pi = 3.14$ **b)** Determine the radius of the sphere whose surface area is 500 given

Volume

c) Complete the given table of data about cylinder by finding the values of the unknown in terms of where applicable:

Question	Five

- **a)** Determine the area covered by the curve eight intervals.
- b) Determine the area covered by the curve intervals.
- from x = 1 to x = 3 using trapezoidal rule having (10 marks)
- $y = 5/\lambda$
 - from x = 1 to x = 3 using Simpsons rule with eight (10 marks)

Base radius	2
Base Area	π
	49
Height	2
Total surface area	

 π 245

 $y = \frac{1}{\sqrt{x}};$

(10 marks)

 $\cos^2 \theta + \sin^2 \theta = 1$

(10 marks)

at

(6 marks)

π