

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN MARINE ENGINEERING

EMR 2107: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages
Question One (Compulsory)
a) Solve for x if:

$$
4^{x}+2^{2 x-3}=9
$$

(i)

$$
3 \log _{2}^{x}=1 / 27
$$

(ii)

$$
3^{2 x+1}=\left(\frac{1}{81}\right)^{2-x}
$$

(iii)
(4 marks)
(2 marks)
(3 marks)
b) The first term of an arithmetic progression is 2 , nth term is -16 and the sum of the first n terms is -49 . Determine the value of n.
c) Use the matrix method to solve the following pairs of simultaneous equations:

$$
\begin{aligned}
& 3 x+2 y=12 \\
& 4 x-y=5
\end{aligned}
$$

d) The $1^{\text {st }}, 3^{\text {rd }}$ and $5^{\text {th }}$ terms of geometric progression form an arithmetic progression. If the first term of the progression is 3 , determine the $10^{\text {th }}$ term of the geometric progression.
e) The data in table 1 shows the number of children per family in a housing estate:

Table 1

No. of Children (x)	0	1	2	3	4	5	6
No. of Families (f)	1	5	11	27	10	4	2

Determine the mean of the data and use it to obtain the standard deviation.

Question Two

a) Simplify the following:

$$
\frac{(x+1)^{3 / 2}+(x+1)^{-1 / 2}}{(x+1)^{-1 / 2}}
$$

(i)

$$
6^{1 / 2^{n}} \times 12^{n+1} \times 27^{-1 / 2^{n}} \div 32^{1 / 2^{n}}
$$

(ii)
b) Without using tables evaluate the following:

$$
\sqrt[5]{64} \times 4^{1.4}
$$

(i)
(2 marks)

$$
\log _{\sqrt{2}} 4
$$

(ii)
(2 marks)

$$
\log _{10} 2=0.3010 \quad \log _{10} 2.5
$$

c) (i) Given , determine without using tables
(2 marks)

$$
\begin{align*}
& P=\log _{10} 2 \quad q=\log _{10} 3 \quad \text { and } \quad \log _{10} \sqrt{3 / 5} \tag{4marks}\\
& \text { (ii) If } \quad \text { express } \quad \text { in terms of } \mathrm{p} \text { and } \mathrm{q} \text {. }
\end{align*}
$$ $x^{3} z=1, y=x^{2} \quad z=y^{n}$

(iii) If and determine the value of u.

Question Three

a) The sum of the first ten terms of an arithmetic progression and the $10^{\text {th }}$ term of the progression both

are \quad. Determine the $1^{\text {st }}$ term and the common difference of the arithmetic progression.
(7 marks)
b) The sum of the first two terms of a geometric progression is 7 and the sum to infinity is 16 . Determine the two possible values of the common ratio.
(7 marks)
c) The $1^{\text {st }}, 5^{\text {th }}$ and $8^{\text {th }}$ terms of an arithmetic progression form consecutive terms of a geometric progression. If the first term is 16 , determine the common difference of the arithmetic progression and the common ratio of the geometric progression.
(6 marks)

Question Four

a) Determine the greatest common factor (GCF) and lowest common multiple (LCM) of 2940 and 3150.

$$
\left(3^{2}-2 \times 7\right)+\left(5 \times 2-2^{2}\right)
$$

(4 marks)
b) (i) Evaluate
(2 marks)

$$
\frac{x+1}{5 y+10} \times \frac{y+2}{x^{2}+2 x+1}
$$

(ii) Simplify

$$
\frac{3}{3+2 \sqrt{3}}
$$

(iii) Rationalize
c) Simply the following:

$$
\frac{a x-a y+b x-b y}{a+b}
$$

(i)

$$
\frac{r / 4}{7 / 8-r / 2}
$$

(ii)
d) Part d missing please add.

Question Five

a) Table 2 shows the distribution of length to the nearest mm of 40 bolts.

Table 2

Height (mm)	$145-149$	$150-154$	$155-159$	$160-164$	$165-169$	$170-174$	$175-179$
Frequency	2	5	16	9	5	2	1

Calculate:
(i) The median length
(ii) The lower and upper quartile
(iii) $80^{\text {th }}$ percentile
(13 marks)
b) Table 3 shows the distribution of marks of 40 candidates in a test:

Table 3

Marks	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-$ 70	$71-80$	$81-90$	$91-100$
Frequenc y	2	2	3	9	12	5	2	3	1	1

Using an assumed mean of 55.5, calculate:
(i) The mean mark
(ii) The standard deviation

