

TECHNICAL UNIVERISTY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

DIPLOMA IN MECHANICAL ENGINEERING (DME)

AMA 2150: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: OCTOBER 2014
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination - Answer Booklet

This paper consists of FIVE questions. Attempt question ONE and any other TWO questions Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Evaluate the following:

$$
\left(\frac{81}{16}\right)^{3 / 4}
$$

(i)
(ii)
b) Solve the following equations
$\log x-1+\log x+8=2 \log x+2$
(i)
(ii) $3 x-11 x-4=0$ by completing the square.
$\frac{x}{8}+\frac{5}{2}=y$
$11+\frac{y}{3}=3 x$
(iii)

Simultaneously by elimination method.
$\log x-1+\log x+8=2 \log x+2$
c) Expand
using the binomial series.

$$
z_{1}=3-j 4 \quad z_{2}=-2+j 5
$$

d) Given and determine in a $+j b$ form:

$$
\begin{aligned}
& \frac{z_{1} z_{2}}{z_{1}-z_{2}} \\
& \quad \frac{\tan x+\sec x}{\sec x\left(1+\frac{\tan x}{\sec x}\right)}=1
\end{aligned}
$$

e) Show that

Question Two

$$
\frac{\sqrt[3]{y^{-c}}}{\sqrt[3]{y^{3}}}
$$

a) (i) Express with positive indices.

$$
\frac{3^{2}+5^{5}+3^{3} \times 5^{3}}{3^{4} \times 5^{4}}
$$

(ii) Evaluate

$$
\frac{1}{2} \log 16+\frac{1}{3} \log 27-2 \log 5
$$

b) (i) Express as the logarithm of a single number.
(4 marks)
(3 marks)
(ii) Evaluate $\log 0.001$
c) (i) Solve by factorization.

$$
\begin{aligned}
& Q=\frac{-1}{2} p+20 \\
& Q=3 / 2 P+10
\end{aligned}
$$

(ii) Solve the simultaneous equations:

Question Three

$$
\left(2 p-\frac{1}{2 q}\right)^{10}
$$

a) (i) Determine the middle term of
(ii) Evaluate
using the binomial theorem, correct to 7 significant figures.
b) Expand the following in ascending powers of x as far as the term in x^{3} using binomial theorem.

$$
\frac{1}{(4-x)^{2}}
$$

(i)

$$
\frac{1}{(1-2 x)}
$$

(ii)

Question Four

$$
2<30^{\circ}+5<-45^{\circ}-4<120^{\circ}
$$

a) Evaluate in polar form
b) (i) Determine the value of $(-7+\mathrm{j} 5) 4$ in rectangular form.
(ii) Determine in polar form

$$
\ln (3+j 4)
$$

Question Five

$$
\sin \theta=0.625 \quad \cos \theta=0.500
$$

a) Given that and determine without using trigonometric tables or calculator the values of:
$\operatorname{cosec} \theta$
(i)
$\sec \theta$
(ii)
$\tan \theta$
(iii)
$\cot \theta$
(iv)
(4 marks)

$$
\cos (y-\pi)+\sin (y+\pi / 2)=0
$$

b) (i) Prove that
(ii) Solve $4 \sec t=5$ for values of t between 0° and 360°.

$$
\frac{1+\cot \theta}{1+\tan \theta}=\cot \theta
$$

(iii) Show that

