

TECHNICAL UNIVERISTY OF MOMBASA Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

DIPLOMA IN MECHANICAL ENGINEERING (DME)

AMA 2150: ENGINEERING MATHEMATICS I

END OF SEMESTER EXAMINATION SERIES: OCTOBER 2014 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consists of **FIVE** questions. Attempt question **ONE** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a) Evaluate the following:

d)	Evaluate the following.		
	$\left(\frac{81}{16}\right)^{3_4}$ (i)	(2 marks)	
	$\frac{3(2^{n+1}) - 4(2^{n-1})}{2^{n+1} - 2^n}$		
	(ii)	(3 marks)	
b)	Solve the following equations $\log x - 1 + \log x + 8 = 2 \log x + 2$		
	(i) $3x - 11x - 4 = 0$	(4 marks)	
	(ii) by completing the square.	(4 marks)	
	$\frac{x}{8} + \frac{5}{2} = y$		
	$11 + \frac{y}{3} = 3x$		
	(iii)		
	Simultaneously by elimination method.	(4 marks)	
	$\log x - 1 + \log x + 8 = 2\log x + 2$		
c)	Expand using the binomial series.	(4 marks)	
d)	$z_1 = 3 - j4$ $z_2 = -2 + j5$ Given and determine in a + jb form: $\frac{z_1 z_2}{z_1 - z_2}$		
	$\frac{\tan x + \sec x}{\sec x \left(1 + \frac{\tan x}{\sec x}\right)} = 1$		
e)	Show that	(4 marks)	
Question Two			
	$\frac{\sqrt[3]{y^{-c}}}{\sqrt[3]{y^3}}$		
a)	(i) Express with positive indices. $\frac{3^2 + 5^5 + 3^3 \times 5^3}{3^4 \times 5^4}$	(3 marks)	
	(ii) Evaluate $3^4 \times 5^4$	(4 marks)	
		(

$$\frac{1}{2}\log 16 + \frac{1}{3}\log 27 - 2\log 5$$

as the logarithm of a single number. (4 marks) b) (i) Express (ii) Evaluate log 0.001 (3 marks)

c) (i) Solve
$$2x^{2} - 7x - 4 = 0$$
 by factorization. (3 marks)
$$Q = \frac{-1}{2}p + 20$$

 $Q = \frac{3}{2}P + 10$

(ii) Solve the simultaneous equations:

Question Three

a)

b)

$\left(2p-\frac{1}{2q}\right)^{10}$			
(i) Determine the middle term of	(5 marks)		
$(1.002)^9$			
(ii) Evaluate using the binomial theorem, correct to 7 significant figures.	(5 marks)		
Expand the following in ascending powers of x as far as the term in x^3 using binomial theorem.			
$(4-x)^2$			
(i)	(6 marks)		
1			
$\overline{(1-2x)}$			
(ii)	(4 marks)		

Question Four

- $2 < 30^{\circ} + 5 < -45^{\circ} 4 < 120^{\circ}$ **a)** Evaluate in polar form (10 marks)
- **b)** (i) Determine the value of (-7 + j5)4 in rectangular form. (5 marks)
 - (ii) Determine in polar form

$$\ln(3+j4)$$

Question Five

- $\sin \theta = 0.625$ $\cos\theta = 0.500$
- determine without using trigonometric tables or **a)** Given that and calculator the values of:
 - $\cos ec\theta$ (i) $\sec\theta$ **(ii)** $\tan \theta$ (iii) $\cot \theta$ (iv) (4 marks)

(5 marks)

(3 marks)

$$\cos(y-\pi) + \sin\left(y+\frac{\pi}{2}\right) = 0$$

b) (i) Prove that

(6 marks)

(5 marks)

 $4 \sec t = 5$ (ii) Solve for values of t between 0° and 360°.

$$\frac{1 + \cot \theta}{1 + \tan \theta} = \cot \theta$$
(5 marks)

(iii) Show that