

# TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences 

DEPARTMENT OF MATHEMATICS \& PHYSISCS DIPLOMA IN MECHANICAL ENGINEERING (DMAE Y1 S1)

AMA 2150: ENGINEERING MATHEMATICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

## Question One (Compulsory)

$$
P=P_{o} e^{-h / c}
$$

where Po is $1.013 \times 105$
a) The pressure P at height h above ground level is given by termine the value of C . Pascal's and the pressure at height 1570 metres is $9.871 \times 104$ Pascal's. Determine the value of C

$$
y=3\left(e^{x}-4 e^{-x}\right)
$$

b) (i) Given , determine the value of x when $\mathrm{y}=3.5$

$$
2^{x} \times 2^{x+1}=10
$$

(ii) Solve for x in the equation
c) The twenty first term of an AP is 37 and the sum of the first twenty terms is 320 . Determine the sum of the first term terms.
d) The area of a triangle sheet of metal is $6 \mathrm{~cm}^{2}, \mathrm{AB}=3 \mathrm{~cm}$ and $\mathrm{AC}=5 \mathrm{~cm}$. Calculate the two possible lengths of BC.

Question Two
a) Determine the number of terms in the following series:

$$
11 / 2+41 / 4+7+93 / 4+\ldots .40
$$

(i)
(ii) $0.03+0.06+0.12+\ldots+15.36$
(8 marks)
b) Three numbers are in arithmetic progression. Their sum is 15 and their product is 45 . Determine the three numbers.
c) 250 grammes of radioactive substance disintegrates at a rate of $2 \%$ per annum. How much of the substance is left after 15 years.
(3 marks)

## Question Three

$$
\theta^{\circ} \leq x \leq 360^{\circ}
$$

a) Sketch the curves for the following trigonometric functions for
(i) $y=\tan x$
(ii) $y=\sin (x+60)$
(iii) $y=\sin x$
$\theta$ 㫜
b) Solve for in the following equations for values of ranging between $0^{\circ}$ and $360^{\circ}$.

$$
\cos \theta-7 \sin \theta=2
$$

(i)

$$
2 \sin \left(\theta+15^{\circ}\right) \cos \left(x-15^{\circ}\right)=1
$$

(ii)

## Question Four

$$
\left(\frac{1+x}{1-x}\right)
$$

a) (i) Obtain the first four terms of the expansion of
(ii) Given x is very small that its square and higher powers can be ignored.

$$
\frac{1}{(1+x)^{2} \sqrt{(1+x)}}=1-5 / 2^{x}
$$

(8 marks)

$$
(1+5 x)^{1 / 5}
$$

b) (i) Determine the first four terms of the expansion of

$$
x=-1 / 32, \quad \sqrt[5]{27}=1.933
$$

(ii) By substituting show that
c) The radius of a cylinder is reduced by $3 \%$ and its height is increased by 45 . Determine the approximate percentage change in its volume.

## Question Five

a) The quadratic equation $3 x^{2}+4 x-5=0$ has its roots as $x=\alpha \quad$ or $\quad$. Determine the value of:

$$
\frac{1}{\alpha}+\frac{1}{\beta}
$$

(i)

$$
\alpha^{2}+\beta^{2}
$$

(ii)

$$
3 x^{3}+x^{2}-8 x+4
$$

b) Show that is zero when $x=2 / 3$ and hence factorize.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

c) Derive the quadratic formula
d) Solve by completing the square the quadratic equation.

