

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN MECHANICAL ENGINEERING (DME)

AMA 2104: ENGINEERING MATHEMATICS I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Solve for x in the following equations:

$$
\frac{3^{y}}{9^{x^{2}}}=3^{x-1}
$$

(i) when $\mathrm{y}=0$

$$
9^{x}+3^{2 x-2}=10
$$

(ii)
(12 marks)

$$
y=3 x^{2}
$$

b) Given that

$$
\log _{3} y=1+2 \log _{3} x
$$

(i) Show that
(ii) Hence solve the equation

$$
\begin{equation*}
1+2 \log _{3} x=\log _{3}(28 x-9) \tag{10marks}
\end{equation*}
$$

$$
(1-x)^{1 / 3}
$$

c) Expand in ascending powers of x as far as the fourth term. By taking the first two terms of the

$$
x=1 / 1000
$$

expansion and substituting find the value of correct to six significant figures.
(8 marks)

Question Two

a) A certain mechanical system has the amount of swing given by:

$$
S=K e^{-01 t}
$$

where K is a constant and t is time in seconds. Determine the time it takes for the amount of swing to reduce to a third initial amount.
b) A ball is thrown straight up from 3 m above the ground, with a velocity of $14 \mathrm{~m} / \mathrm{s}$. Given $S=K+u t-1 / 2 g t^{2}$, where S is the height above the ground. When does it hit the ground?
c) Solve by completing the square, the quadratic equation:

$$
a x^{2}+b x+c=0
$$

Question Three

θ
a) Solve for values between 0° and 360° in the equations.

$$
2 \sin \theta+7 \cos \theta=4
$$

(i)

$$
\cos \left(\theta+20^{\circ}\right)-\cos \left(\theta-70^{\circ}\right)=0
$$

(ii)

$$
2 \tan ^{2} \theta+\sec \theta=1
$$

(iii)
b) Prove the identity:

$$
\begin{equation*}
\sin 2 x=\frac{2 \tan x}{1+\tan ^{2} x} \tag{4marks}
\end{equation*}
$$

Question Four

a) In a geometric progression, the eighth term is 8 times the fifth and the sum of the $6^{\text {th }}$ and $7^{\text {th }}$ term is 288. Determine:
(i) Common ratio
(ii) The first term
(iii) Sum from the $5^{\text {th }}$ to $10^{\text {th }}$ term
b) If ksh 500 is invested at a compound interest of 6.5% per annum? Determine:
(i) The value after 10 years
(ii) The time, correct to the nearest year.

It takes for the total amount to reach kshs 1200.
(6 marks)
c) The eighth term of an arithmetical progression is twice the third term and the sum of the first eight terms is 39 .
(i) Find the first three terms of the progression.

$$
3 / 8 n(n+5)
$$

(ii) Show that the sum to n-terms is

Question Five

$$
\left(1+1 / 2^{x}\right)^{10}
$$

a) Obtain the first four terms of the expansion of
in ascending powers of x. Hence find the

$$
(1.005)^{10}
$$

value of correct to four decimal places.
b) Show that if x is small enough for its cube and higher powers to be neglected:

$$
\sqrt{\frac{1-x}{1+x}}=1-x+\frac{x^{2}}{2} \quad x=1 / 8 \text { and by putting }^{\text {show that }}
$$

c) Pressure P and volume v are related by the expression:

$$
P V^{3}=C
$$

where c is a constant. Find the approximate percentage change in C when P is increased by 2% and v increased by 0.8%

